首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿魏酸酯酶作为微生物降解植物多糖的酶系的一部分,其从细胞壁中降解多糖获得芳香酸和单多糖的能力越来越受到重视.主要介绍了阿魏酸酯酶研究进展,包括阿魏酸酯酶的研究现状,酶-底物分子对接模型、阿魏酸酯酶基因克隆表达、重组与调控以及应用.  相似文献   

2.
Feruloyl esterases hydrolyze the ester linkages of ferulic and diferulic acids present in plant cell walls. This interesting group of enzymes also has a potentially broad range of applications in the pharmaceutical and agri-food industries. An overview of the current knowledge of fungal feruloyl esterases focusing on the diverse of substrate specificity and potential applications is presented in this review. Furthermore, biological functions of ferulic acid are discussed.  相似文献   

3.

Fungi constitute an invaluable natural resource for scientific research, owing to their diversity; they offer a promising alternative for bioprospecting, thus contributing to biotechnological advances. For a long time, extensive information has been exploited and fungal products have been tested as a source of natural compounds. In this context, enzyme production remains a field of interest, since it offers an efficient alternative to the hazardous processes of chemical transformations. Owing to their vast biodiversity and peculiar biochemical characteristics, two fungal categories, white-rot and anaerobic Neocallimastigomycota, have gathered considerable attention for biotechnological applications. These fungi are known for their ability to depolymerize complex molecular structures and are used in degradation of lignocellulosic biomass, improvement of animal feed digestibility, biogas and bioethanol production, and various other applications. However, there are only limited reports that describe proteolytic enzymes and esterases in these fungi and their synergistic action with lignocellulolytic enzymes on degradation of complex polymers. Thus, in this minireview, we focus on the importance of these organisms in enzyme technology, their bioprospecting, possibility of integration of their enzyme repertoire, and their prospects for future biotechnological innovation.

  相似文献   

4.
Fourteen thermophilic and thermotolerant fungal strains isolated from composting soils produced plant cell wall-acting esterases in a medium containing corn cobs and oat spelt xylan. The concentrated and dialyzed protein extracts of these fungi were fractionated using isoelectric-focusing, gels sliced and eluted protein in each slice was assayed for esterase activity against p-nitrophenyl acetate. A total of 84 esterases detected on the basis of pI were found to show distinct preferential substrate specificities towards p-nitrophenyl acetate, p-nitrophenyl ferulate and p-nitrophenyl butyrate, and were putatively classified as acetyl esterases and esterases types I and II. None of the esterases were active against p-nitrophenyl myristate. In addition, these esterases were characterized as acid, neutral or alkaline active.  相似文献   

5.
The halophilic Archaea are a group of microorganisms that have not been extensively considered for biotechnological applications. This review describes some of the enzymes and products and the potential applications of this unique group of microorganisms to various industrial processes. Specifically, the characteristics of the glycosyl hydrolases, lipases and esterases, proteases, biopolymers and surfactants, as well as some miscellaneous other activities will be described.  相似文献   

6.
Feruloyl esterases represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds between plant cell wall polysaccharide and phenolic acid. They are widely distributed in plants and microorganisms. Besides lipases, a considerable number of microbial feruloyl esterases have also been discovered and overexpressed. This review summarizes the latest research on their classification, production, and biophysicochemical properties. Special emphasis is given to the importance of that type of enzyme and their related phenolic ferulic acid compound in biotechnological processes, and industrial and medicinal applications.  相似文献   

7.
Mannans are the major constituents of the hemicellulose fraction in softwoods and show widespread distribution in plant tissues. The major mannan-degrading enzymes are β-mannanases, β-mannosidases and β-glucosidases. In addition to these, other enzymes such as α-galactosidases and acetyl mannan esterases, are required to remove the side chain substituents. The mannanases are known to be produced by a variety of bacteria, fungi, actinomycetes, plants and animals. Microbial mannanases are mainly extracellular and can act in wide range of pH and temperature because of which they have found applications in pulp and paper, pharmaceutical, food, feed, oil and textile industries. This review summarizes the studies on mannanases reported in recent years in terms of important microbial sources, production conditions, enzyme properties, heterologous expression and potential industrial applications.  相似文献   

8.
The white-rot fungus Phanerochaete chrysosporium produces glucuronoyl esterase, a recently discovered carbohydrate esterase, during growth on sugar beet pulp. Two putative genes encoding this enzyme, ge1 and ge2, were isolated and cloned. Heterologous expression in Aspergillus vadensis, Pycnoporus cinnabarinus and Schizophyllum commune resulted in extracellular glucuronoyl esterase activity, demonstrating that these genes encode this enzymatic function. The amino acid sequence of GE1 was used to identify homologous genes in the genomes of twenty-four fungi. Approximately half of the genomes, both from ascomycetes and basidiomycetes, contained putative orthologues, but their presence could not be assigned to any of fungal class or subclass. Comparison of the amino acid sequences of identified and putative glucuronoyl esterases to other types of carbohydrate esterases (CE) confirmed that they form a separate family of CEs. These enzymes are interesting candidates for biotechnological applications such as the separation of lignin and hemicellulose.  相似文献   

9.
《Process Biochemistry》2010,45(8):1203-1213
This review highlights the occurrence and functions of mannans in plant materials, as well as enzymatic hydrolysis and microbial biodegradation thereof. Fungal 1,4-β-d-mannan mannohydrolases (β-mannanases) are discussed with regards to their mode of action with reference to auxiliary enzymes involved in the hydrolysis of mannans such as α-galactosidases, β-mannosidases, β-glucosidases and acetyl mannan esterases. The diversity and production of β-mannanases by various species of the phyla Basidiomycota and Ascomycota are also highlighted. Cloning and heterologous expression of both fungal and bacterial β-mannanases in fungal expression systems are reviewed, indicating production of enzymes at levels up to grams per litre and with high purity, making these production systems ideal for industrial enzyme production. Application of fungal β-mannanases in the production of nutraceuticals, food and feed, and commodity products is discussed.  相似文献   

10.
11.
The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels.  相似文献   

12.
Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.  相似文献   

13.
Abstract When considering the current state of the biorefinery industry, it is readily apparent that industrial cellulose and hemicellulose digestion processes are relatively advanced, whereas enzymatic pre-treatment strategies for biomass delignification and cellulose solubilization are not well developed. The need for efficient biomass pre-treatment strategies presents a significant opportunity for researchers studying lignocellulose digestion in termites and other insects. With an emphasis on industrial biomass pre-treatment, this review provides an overview of: (i) industrial biorefining operations (feedstocks, processing, and economics); (ii) recent findings from termite research that have revealed candidate enzymes; and (iii) research needs and opportunities for consideration by entomologists working in this area. With respect to research findings, recently identified candidate lignases (laccases, catalases, peroxidases, esterases), other potentially important detoxification enzymes (cytochrome P450, superoxide dismutase), and phenolic acid esterases (carboxylesterases) that may assist in hemicellulose solubilization are overviewed. Regarding research needs and opportunities, several approaches for identification of candidate pre-treatment enzymes from upstream, symbiont-free gut regions are also described.  相似文献   

14.
酯酶自发现以来,逐渐被开发利用于医药、化工、食品等领域,其中动植物来源酯酶工业化应用较少,微生物作为天然的酶资源库,是新型酯酶的主要来源之一。然而,大量新型微生物酯酶由于活性低、稳定性差等原因难以达到工业应用的要求;同时酯酶的筛选、活性评价方法仍存在通用性低、成本高的问题,一定程度上阻碍了新型微生物酯酶挖掘和改造。据此,本文总结了近年来微生物酯酶分类与发现、结构与催化特性、改造和优化以及应用等领域的研究新进展,以期促进酯酶的挖掘和工业化应用。  相似文献   

15.
Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.  相似文献   

16.
There is an intricate network of relations between endophytic fungi and their hosts that affects the production of various bioactive compounds. Plant-associated endophytic fungi contain industrially important enzymes and have the potential to fulfil their rapid demand in the international market to boost business in technology. Being safe and metabolically active, they have replaced the usage of toxic and harmful chemicals and hold a credible application in biotransformation, bioremediation and industrial processes. Despite these, there are limited reports on fungal endophytes that can directly cater to the demand and supply of industrially stable enzymes. The underlying reasons include low endogenous production and secretion of enzymes from fungal endophytes which have raised concern for widely accepted applications. Hence, it is imperative to augment the biosynthetic and secretory potential of fungal endophytes. Modern state-of-the-art biotechnological technologies aiming at strain improvement using cell factory engineering as well as precise gene editing like Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its Associated proteins (Cas) systems which can provide a boost in fungal endophyte enzyme production. Additionally, it is vital to characterize optimum conditions to grow one strain with multiple enzymes (OSME). The present review encompasses various plants-derived endophytic fungal enzymes and their applications in various sectors. Furthermore, we postulate the feasibility of new precision approaches with an aim for strain improvement and enhanced enzyme production.  相似文献   

17.
Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution.  相似文献   

18.

Laccases are multicopper enzymes present in plants, fungi, bacteria, and insects, which catalyze oxidation reactions together with four electron reduction of oxygen to water. Plant, bacterial, and insect laccases have a polymerizing role in nature, implicated in biosynthesis of lignin, melanin formation, and cuticle hardening, respectively. On the other hand, fungal laccases carry out both polymerizing (melanin synthesis and fruit body formation) as well as depolymerizing roles (lignin degradation). This bifunctionality of fungal laccases can be attributed to the presence of multiple isoforms within the same as well as different genus and species. Interestingly, by manipulating culture conditions, these isoforms with their different induction patterns and unique biochemical characteristics can be expressed or over-expressed for a targeted biotechnological application. Consequently, laccases can be considered as one of the most important biocatalyst which can be exploited for divergent industrial applications viz. paper pulp bleaching, fiber modification, dye decolorization, bioremediation as well as organic synthesis. The present review spotlights the role of fungal laccases in various antagonistic applications, i.e., polymerizing and depolymerizing, and co-relating this dual role with potential industrial significance.

  相似文献   

19.
Aurilia V  Parracino A  D'Auria S 《Gene》2008,410(2):234-240
Psychrophiles produce cold-evolved enzymes that display a high catalytic efficiency, associated with a low thermal stability. In recent years, these enzymes have attracted the attention of scientists because of their peculiar properties that render them particularly useful in investigating the relationship existing between enzyme stability and flexibility on one hand, and enzyme activity on the other hand. Among these enzymes, the esterases, and particularly the feruloyl esterases, have potential uses over a broad range of applications in the agro-food industries. In recent years, the number of microbial feruloyl esterase activities has increased in the growing genome databases. Based on substrate utilization data and supported by primary sequence identity, four subclasses of esterase have been characterized so far. Up to the present, ten genomes from psychrophilic bacteria have been completely sequenced and additional fourteen genomes are under investigation. From the bacteria strains whose genome has been completely sequenced, we analyzed the presence of esterase genes, both the putative genes and the determined experimentally genes, and performed a ClustalW analysis for feruloyl esterases. Major details will be presented for the ORF PSHAa1385 from P. haloplanktis TAC125 that recently has been studied in our research group. In addition, the potential biotechnology applications of this class of enzymes will be discussed.  相似文献   

20.
The filamentous fungal strains Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, previously selected for the bioconversion of ferulic acid to vanillic acid and vanillin respectively, were grown on sugar beet pulp. A large spectrum of polysaccharide-degrading enzymes was produced by A. niger and very few levels of feruloyl esterases were found. In contrast, P. cinnabarinus culture filtrate contained low amount of polysaccharide-degrading enzymes and no feruloyl esterases. In order to enhance feruloyl esterases in A. niger cultures, feruloylated oligosaccharide-rich fractions were prepared from sugar beet pulp or cereal bran and used as carbon sources. Number of polysaccharide-degrading enzymes were induced. Feruloyl esterases were much higher in maize bran-based medium than in sugar beet pulp-based medium, demonstrating the ability of carbon sources originating from maize to induce the synthesis of feruloyl esterases. Thus, A. niger I-1472 could be interesting to release ferulic acid from sugar beet pulp or maize bran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号