首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A site- and strand-specific nick, introduced in the F plasmid origin of transfer, initiates conjugal DNA transfer during bacterial conjugation. Recently, molecular genetic studies have suggested that DNA helicase I, which is known to be encoded on the F plasmid, may be involved in this nicking reaction (Traxler, B. A., and Minkley, E. G., Jr. (1988) J. Mol. Biol. 204, 205-209). We have demonstrated this site- and strand-specific nicking event using purified helicase I in an in vitro reaction. The nicking reaction requires a superhelical DNA substrate containing the F plasmid origin of transfer, Mg2+ and helicase I. The reaction is protein concentration-dependent but, under the conditions used, only 50-70% of the input DNA substrate is converted to the nicked species. Genetic data (Everett, R., and Willetts, N. (1980) J. Mol. Biol. 136, 129-150) have also suggested the involvement of a second F-encoded protein, the TraY protein, in the oriT nicking reaction. Unexpectedly, the in vitro nicking reaction does not require the product of the F plasmid traY gene. The implications of this result are discussed. The phosphodiester bond interrupted by helicase I has been shown to correspond exactly to the site nicked in vivo suggesting that helicase I is the site- and strand-specific nicking enzyme that initiates conjugal DNA transfer. Thus, helicase I is a bifunctional protein which catalyzes site- and strand-strand specific nicking of the F plasmid in addition to the previously characterized duplex DNA unwinding (helicase) reaction.  相似文献   

2.
oriT sequence of the antibiotic resistance plasmid R100.   总被引:12,自引:5,他引:7       下载免费PDF全文
We present the nucleotide sequence of the oriT region from plasmid R100. Comparison to other IncF plasmids revealed homology around the proposed nick sites as well as conservation of inverted repeated sequences in the nonhomologous region. Three areas showed strong homology (eight of nine nucleotides) to the consensus sequence for binding of integration host factor, suggesting a role for this DNA-binding protein in nicking at oriT.  相似文献   

3.
4.
T Abo  S Inamoto    E Ohtsubo 《Journal of bacteriology》1991,173(20):6347-6354
The product of the traM gene of plasmid R100 was purified as the TraM-collagen-beta-galactosidase fusion protein (TraM*) by using a beta-galactosidase-specific affinity column, and the TraM portion of TraM* (TraM') was separated by collagenolysis. Both the TraM* and TraM' proteins were found to bind specifically to a broad region preceding the traM gene. This region (designated sbm) was located within the nonconserved region in oriT among conjugative plasmids related to R100. The region seems to contain four core binding sites (designated sbmA, sbmB, sbmC, and sbmD), each consisting of a similar number of nucleotides and including a homologous 15-bp sequence. This result, together with the observation that the TraM* protein was located in the membrane fraction, indicates the possibility that the TraM protein has a function in anchoring the oriT region of R100 at the sbm sites to the membrane pore, through which the single-stranded DNA is transferred to the recipient. sbmC and sbmD, each of which contained a characteristic inverted repeat sequence, overlapped with the promoter region for the traM gene. This suggests that the expression of the traM gene may be regulated by its own product.  相似文献   

5.
Boundaries of the nicking region for the F plasmid transfer origin, oriT   总被引:1,自引:0,他引:1  
The extent of the F plasmid oriT nicking region was determined from the properties of successive substitution mutations in the region from base pair 121 to base pair 174 and from KMnO4 probing of DNA structural distortions induced in vivo by tra gene products. Nicking and transfer assays indicated that the left margin of oriT Wes predominantly at the nick site, and that the nicking domain primarily lies within 17bp to the right of the nick. Some mutants that were proficient for nicking showed reduced frequencies of termination, indicating that oriT nicking does not guarantee efficient termination. DNA in the vicinity of the nick (G137, T138, G140, and T141 on the nicked strand) showed elevated sensitivity to KMnO4 when tra gene products were present in the donor. Bases C145, C146, C147, C149, and G150 on the un-nicked strand also became more sensitive to oxidation under tra+ conditions. The bases preferentially oxidized by KMnO4 lie within the nicking domain, as defined by the substitution mutants, and they include dinucleotides that can produce kinks in the DNA. Base pairs in the nicking region are calculated to be more thermodynamically stable than base pairs in the flanking regions.  相似文献   

6.
R1162 is efficiently comobilized during conjugative transfer of the self-transmissible plasmid R751. Bacteriophage M13 derivatives that contain two directly repeated copies of oriT, the site on R1162 DNA required in cis for mobilization, were constructed. Phage DNA molecules underwent recombination during infection of Escherichia coli, with the product retaining a single functional copy of oriT. Recombination was strand specific and depended on R1162 gene products involved in mobilization, but did not require the self-transmissible plasmid vector. Two genes were identified, one essential for recombination and the other affecting the frequency of recombination. Recombination of bacteriophage DNA could form the basis of a simple model for some of the events occurring during conjugation without the complexity of a true mating system.  相似文献   

7.
Plasmids containing a direct repeat of plasmid R388 oriT are capable of site-specific recombination, which results in deletion of the intervening DNA. This reaction occurs in the presence, but not in the absence, of the region of R388 implicated in DNA processing during conjugation. This region contains three genes, trwA, trwB, and trwC. By using mutants of each of the three genes, it was demonstrated that only trwC is required for the oriT-specific recombination. Further analysis showed that the N-terminal 272 amino acids of the protein are sufficient to catalyze recombination. TrwC is also capable of promoting intermolecular recombination between two plasmids containing oriT, suggesting that double-strand breaks in both plasmid DNAs are involved in the process. Additionally, intramolecular recombination between R388 oriT and R46 oriT did not occur in the presence of both nickases. This suggests that the half-reactions at each oriT are not productive if they occur separately; therefore, an interaction between the recombination complexes formed at each recombining site is required. This is the first report in which a nicking-closing enzyme involved in conjugal DNA transfer promotes oriT-specific recombination of double-stranded DNA in the absence of conjugation.  相似文献   

8.
T Abo  E Ohtsubo 《Journal of bacteriology》1995,177(15):4350-4355
We have previously identified three sites, named sbi, ihfA, and sbyA, specifically recognized or bound by the TraI, IHF, and TraY proteins, respectively; these sites are involved in nicking at the origin of transfer, oriT, of plasmid R100. In the region next to these sites, there exists the sbm region, which consists of four sites, sbmA, sbmB, sbmC, and sbmD; this region is specifically bound by the TraM protein, which is required for DNA transfer. Between sbmB and sbmC in this region, there exists another IHF-binding site, ihfB. The region containing all of these sites is located in the proximity of the tra region and is referred to as the oriT region. To determine whether these sites are important for DNA transfer in vivo, we constructed plasmids with various mutations in the oriT region and tested their mobilization in the presence of R100-1, a transfer-proficient mutant of R100. Plasmids with either deletions in the sbi-ihfA-sbyA region or substitution mutations introduced into each specific site in this region were mobilized at a greatly reduced frequency, showing that all of these sites are essential for DNA transfer. By binding to ihfA, IHF, which is known to bend DNA, may be involved in the formation of a complex (which may be called oriT-some) consisting of TraI, IHF, and TraY that efficiently introduces a nick at oriT. Plasmids with either deletions in the sbm-ihfB region or substitution mutations introduced into each specific site in this region were mobilized at a reduced frequency, showing that this region is also important for DNA transfer. By binding to ihfB, IHF may also be involved in the formation of another complex (which may be called the TraM-IHF complex) consisting of TraM and IHF that ensures DNA transfer with a high level of efficiency. Several-base-pair insertions into the positions between sbyA and sbmA affected the frequency of transfer in a manner dependent upon the number of base pairs, indicating that the phasing between sbyA and sbmA is important. This in turn suggests that both oriT-some and the TraM-IHF complex should be in an appropriate position spatially to facilitate DNA transfer.  相似文献   

9.
Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4-8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5'-CC↓CGG-3'/3'-GGG↓CC-5' target site ('↓' designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5'-CCCGG-3' or the 5'-CCGGG-3' strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.  相似文献   

10.
An essential early step in conjugal mobilization of R1162, nicking of the DNA strand that is subsequently transferred, is carried out in the relaxosome, a complex of two plasmid-encoded proteins and DNA at the origin of transfer (oriT). A third protein, MobB, is also required for efficient mobilization. We show that in the cell this protein increases the proportion of molecules specifically nicked at oriT, resulting in lower yields of covalently closed molecules after alkaline extraction. These nicked molecules largely remain supercoiled, with unwinding presumably constrained by the relaxosome. MobB enhances the sensitivity of the oriT DNA to oxidation by permanganate, indicating that the protein acts by increasing the fraction of complexed molecules. Mutations that significantly reduce the amount of complexed DNA in the cell were isolated. However, plasmids with these mutations were mobilized at nearly the normal frequency, were nicked at a commensurate level, and still required MobB. Our results indicate that the frequency of transfer is determined both by the amount of time each molecule is in the nicked form and by the proportion of complexed molecules in the total population.  相似文献   

11.
Cleavage at the F plasmid nic site within the origin of transfer (oriT) requires the F-encoded proteins TraY and TraI and the host-encoded protein integration host factor in vitro. We confirm that F TraY, but not F TraM, is required for cleavage at nic in vivo. Chimeric plasmids were constructed which contained either the entire F or R100-1 oriT regions or various combinations of nic, TraY, and TraM binding sites, in addition to the traM gene. The efficiency of cleavage at nic and the frequency of mobilization were assayed in the presence of F or R100-1 plasmids. The ability of these chimeric plasmids to complement an F traM mutant or affect F transfer via negative dominance was also measured using transfer efficiency assays. In cases where cleavage at nic was detected, R100-1 TraI was not sensitive to the two-base difference in sequence immediately downstream of nic, while F TraI was specific for the F sequence. Plasmid transfer was detected only when TraM was able to bind to its cognate sites within oriT. High-affinity binding of TraY in cis to oriT allowed detection of cleavage at nic but was not required for efficient mobilization. Taken together, our results suggest that stable relaxosomes, consisting of TraI, -M, and -Y bound to oriT are preferentially targeted to the transfer apparatus (transferosome).  相似文献   

12.
N Furuya  T Nisioka    T Komano 《Journal of bacteriology》1991,173(7):2231-2237
Two transfer genes of IncI1 plasmid R64, tentatively designated nikA and nikB, were cloned and sequenced. They are located adjacent to the origin of transfer (oriT) and appear to be organized into an operon, which we call the oriT operon. On the basis of the DNA sequence, nikA and nikB were concluded to encode proteins with 110 and 899 amino acid residues, respectively. Complementation analysis indicated that these two genes are indispensable for the transfer of R64 but are not required for the mobilization of ColE1. By the maxicell procedure, the product of nikA was found to be a 15-kDa protein. On treating a cleared lysate prepared from cells harboring a plasmid containing oriT, nikA, and nikB with sodium dodecyl sulfate or proteinase K, superhelical plasmid DNA in the cleared lysate was converted to an open circular form (relaxation). Relaxation of plasmid DNA was found to require the oriT sequence in cis and the nikA and nikB sequences in trans. It would thus follow that the products of nikA and nikB genes form a relaxation complex with plasmid DNA at the oriT site.  相似文献   

13.
The nick site at the origin of transfer, oriT, of IncI1 plasmid R64 was determined. A site-specific and strand-specific cleavage of the phosphodiester bond was introduced during relaxation of the oriT plasmid DNA. Cleavage occurred between 2'-deoxyguanosine and thymidine residues, within the 44-bp oriT core sequence. The nick site was located 8 bp from the 17-bp repeat. A protein appeared to be associated with the cleaved DNA strand at the oriT site following relaxation. This protein was observed to bind to the 5' end of the cleaved strand, since the 5'-phosphate of the cleaved strand was resistant to the phosphate exchange reaction by polynucleotide kinase. In contrast, the 3' end of the cleaved strand appeared free, since it was susceptible to primer extension by DNA polymerase I. The global similarity of the oriT structures of IncI1 and IncP plasmids is discussed.  相似文献   

14.
Location of the nick at oriT of the F plasmid   总被引:16,自引:0,他引:16  
The oriT locus of the Escherichia coli K12 F plasmid contains a site at which one of the DNA strands is cleaved as a prelude to conjugal transmission to recipient bacteria. We have remapped this site biochemically by using oriT-containing plasmids that were purified from bacteria expressing the F transfer (tra) functions. The strand interruption was found on the transferred strand 137 base-pairs clockwise of the center of the BglII site at 66.7 on the F map. This location is consistent with the locations anticipated from studies of delta traF' plasmids, but it differs from previous results by other investigators. The strand interruption produced a 3'-OH, but the nature of the 5' terminus of the strand on the other side of the nick was not determined. Some DNA sequence motifs in the vicinity of the oriT nick site of F resemble the chromosomal site involved in formation of delta traF'purE plasmids.  相似文献   

15.
The traY gene product of plasmid R100 was purified as a hybrid protein, TraY-collagen-beta-galactosidase. The hybrid protein as well as the TraY' protein, which was obtained by collagenolysis of the hybrid protein, specifically binds to an AT-rich 36-base pair sequence (here called sbyA) within the region including the origin of transfer, oriT. The oriT region consists of highly conserved and nonconserved regions among R100-related plasmids, and sbyA was located within the nonconserved region immediately adjacent to the conserved region. This supports the idea that the TraY protein has a role as a component of endonuclease in recognizing its own oriT sequence. Unexpectedly, however, the hybrid protein and the TraY' protein were also found to bind to two different AT-rich sequences (each 24 base pairs in length) in the promoter region preceding the traY gene (here called sbyB and sbyC). This suggests that the TraY protein may have another role in regulating the expression of its own gene. The "TAA(A/T)T" sequence motif observed in these binding sites might constitute a core sequence recognized by the TraY protein. Mg2+ is not required for the specific binding of the TraY protein.  相似文献   

16.
The nucleotide sequence at the oriT region of the IncI1 plasmid R64 was determined. A recombinant plasmid carrying a 141-base-pair R64 sequence was mobilized with a normal frequency, while a plasmid carrying only 44 base pairs of this R64 sequence was mobilized with a frequency 1/10 that of the original plasmid. The oriT region of the R64 plasmid contains two inverted-repeat sequences.  相似文献   

17.
Initiation and termination of DNA transfer at F plasmid oriT   总被引:6,自引:2,他引:4  
DNA sequences within the F plasmid transfer origin (oriT) were tested for their ability to initiate or terminate conjugal transfer. Mutant and wild-type oriT elements were cloned as direct repetitions flanking the rpsL gene on a pBR322-based plasmid, and the frequency of deletion of this segment during matings sponsored by F’lac (F42) with streptomycin-resistant recipients was measured. Shortened oriT elements that lacked adjacent TraM-binding sites allowed efficient initiation and termination. Some truncated orir segments lacking the TraM-binding sites and the TraY-binding site, sbyA, initiated transfer inefficiently, but nevertheless promoted efficient termination. Removal of TraM-, TraY-, and IHF-binding sites severely reduced both nicking and termination. Point mutations that previously had been reported to prevent nicking caused reduced levels of both initiation and termination. These results indicate that regions of oriT supporting initiation are more extensive than those needed for termination, although some regions are required for both. Moreover, termination can be effective for some mutant loci that do not support efficient nicking.  相似文献   

18.
M M Tsai  Y H Fu    R C Deonier 《Journal of bacteriology》1990,172(8):4603-4609
F plasmid oriT DNA extending from the F kilobase coordinate 66.7 (base pair [bp] 1 on the oriT sequence map) rightward to bp 527 was analyzed for intrinsic bends (by permutation assays) and for binding of integration host factor (IHF) (by gel retardation and DNase footprinting). Intrinsic bending of the 527-bp fragment (bend center approximately at bp 240) was represented as a composite of at least two components located near bp 170 and near bp 260. IHF bound primarily to a site extending from bp 165 to 195 and with lower affinity to a site extending from bp 287 to 319. The intrinsic curvature and sequences to which IHF binds (IHF is known to bend DNA) may play a structural role in oriT function.  相似文献   

19.
The avian retrovirus pp32 DNA endonuclease prefers to nick supercoiled DNA containing long terminal repeat (LTR) circle junction sequences at one or the other of two sites, each which mapped two nucleotides back from the circle junction. The sequence at the sites of nicking was (sequence: see text) where increases indicates the positions of the two alternative nicked sites. This site-specific nicking was observed when the circle junction LTR DNA was present in supercoiled form, the divalent metal ion was Mg2+ and the molar ratio of protein to DNA was low. The majority of other LTR DNA sites nicked by pp32 in the presence of Mg2+ were adjacent to or within the dinucleotide CA.  相似文献   

20.
The broad-host-range, multicopy plasmid R1162 is efficiently mobilized during conjugation by the self-transmissible plasmid R751. The relaxosome, a complex of plasmid DNA and R1162-encoded proteins, forms at the origin of transfer ( oriT ) and is required for mobilization. Transfer is initiated by strand- and site-specific nicking of the DNA within this structure. We show by probing with potassium permanganate that oriT DNA is locally melted within the relaxosome, in the region from the inverted repeat to the site that is nicked. Mutations in this region of oriT , and in genes encoding the protein components of the relaxosome, affect both nicking and melting of the DNA. The nicking protein in the relaxosome is MobA, which also ligates the transferred linear, single strand at the termination of a round of transfer. We propose that there is an underlying similarity in the substrates for these two MobA-dependent, DNA-processing reactions. We also show that MobA has an additional role in transfer, beyond the nicking and resealing of oriT DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号