首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
It is widely believed that the diversity of plants influences the diversity of animals, and this should be particularly true of herbivores. We examine this supposition at a moderate spatial extent by comparing the richness patterns of the 217 butterfly species resident in California to those of plants, including all 5,902 vascular plant species and the 552 species known to be fed on by caterpillars. We also examine the relationships between plant/butterfly richness and 20 environmental variables. We found that although plant and butterfly diversities are positively correlated, multiple regression, path models, and spatial analysis indicate that once primary productivity (estimated by a water-energy variable, actual evapotranspiration) and topographical variability are incorporated into models, neither measure of plant richness has any relationship with butterfly richness. To examine whether butterflies with the most specialized diets follow the pattern found across all butterflies, we repeated the analyses for 37 species of strict monophages and their food plants and found that plant and butterfly richness were similarly weakly associated after incorporating the environmental variables. We condude that plant diversity does not directly influence butterfly diversity but that both are probably responding to similar environmental factors.  相似文献   

2.
Aim To investigate the relative contributions of current vs. historical factors in explaining broad‐scale diversity gradients using a combination of contemporary factors and a quantitative estimate of the temporal accessibility of areas for recolonization created by glacial retreat following the most recent Ice Age. Location The part of the Nearctic region of North America that was covered by ice sheets during the glacial maximum 20 000 BP. Methods We used range maps to estimate the species richness of mammals and terrestrial birds in 48 400 km2 cells. Current conditions in each cell were quantified using seven climatic and topographical variables. Historical conditions were estimated using the number of years before present when an area became exposed as the ice sheets retreated during the post‐Pleistocene climate warming. We attempted to tease apart contemporary and historical effects using multiple regression, partial regression and spatial autocorrelation analysis. Results A measure of current energy inputs, potential evapotranspiration, explained 76–82% of the variance in species richness, but time since deglaciation explained an additional 8–13% of the variance, primarily due to effects operating at large spatial scales. Because of spatial covariation between the historical climates influencing the melting of the ice sheet and current climates, it was not possible to partition their effects fully, but of the independent effects that could be identified, current climate explained two to seven times more variance in richness patterns than age. Main Conclusions Factors acting in the present appear to have the strongest influence on the diversity gradient, but an historical signal persisting at least 13 000 years is still detectable. This has implications for modelling changes in diversity patterns in response to future global warming.  相似文献   

3.
Mountains are among the most powerful natural gradients for testing ecological and evolutionary responses of biota to environmental influences because differences in climate and plant structure occur over short spatial scales. We describe the spatiotemporal distribution patterns and drives of fruit‐feeding butterfly diversity in the mountainous region of Serra do Cipó, Minas Gerais, Brazil. Seven elevations from 822 to 1,388 m a.s.l. were selected for evaluating the effects of abiotic factors and vegetation characteristics on butterfly diversity. A total of 44 fruit‐feeding butterfly species were recorded in a two‐year study. Species richness (local and regional) of fruit‐feeding butterflies decreased with increasing elevation. The interaction between temperature or humidity and precipitation influenced the abundance and β‐diversity of butterflies in the elevation gradient, whereas β‐diversity decreased with increasing plant richness. Butterfly richness (local and regional) and β‐diversity varied with the sampling period, with fewer species in July (2012 and 2013), the dry period, as expected for Neotropical insects. β‐Diversity in space and time was due to species replacement (turnover), indicating that butterfly composition differs throughout the mountain and over time. In summary, climate and plant richness largely influence butterfly diversity in the elevational gradient. Climatic changes in conjunction with increasing anthropic impacts on mountainous regions of southeast Brazil will likely influence the community of mountaintop butterflies in the Espinhaço Mountain Range. Abstract in Portuguese is available with online material.  相似文献   

4.
A long-standing task for ecologists and biogeographers is to reveal the underlying mechanisms accounting for the geographic pattern of species diversity. The number of hypotheses to explain geographic variation in species diversity has increased dramatically during the past half century. The oldest and the most popular one is environmental determination. However, seasonality, the intra-annual variability in climate variables has been rarely related to species richness. In this study, we assessed the relative importance of three environmental hypotheses: energy, seasonality and heterogeneity in explaining species richness pattern of butterflies in Eastern China. In addition, we also examined how environmental variables affect the relationship between species richness of butterflies and seed plants at geographic scale. All the environmental factors significantly affected butterfly richness, except sampling area and coefficient of variation of mean monthly precipitation. Energy and seasonality hypotheses explained comparable variation in butterfly richness (42.3 vs. 39.3 %), higher than that of heterogeneity hypothesis (25.9 %). Variation partitioning indicated that the independent effect of seasonality was much lower (0.0 %) than that of energy (5.5 %) and heterogeneity (6.3 %). However, seasonality performed better in explaining butterfly richness in topographically complex areas, reducing spatial autocorrelation in butterfly richness, and more strongly affect the association between butterflies and seed plants. The positive relationship between seed plant richness and butterfly richness was most likely the result of environmental variables (especially seasonality) influencing them in parallel. Insufficient sampling may partly explain the low explanatory power of environmental model (52.1 %) for geographic butterfly richness pattern. Our results have important implications for predicting the response of butterfly diversity to climate change.  相似文献   

5.
宁夏贺兰山自然保护区蝴蝶群落多样性及其与环境因素的关系,2017年5-9月采用样线法对贺兰山东麓6类生境和不同干扰类型10条样线的蝴蝶群落结构及其多样性季节动态进行调查。共记录蝴蝶5科36属45种,蛱蝶科Nymphalidae的属和物种数最多,为17属19种;凤蝶科Papilionidae最少,仅1属1种。菜粉蝶Pieris rapae、云粉蝶Pontia daplidice、斑缘豆粉蝶Colias erate和小檗绢粉蝶Aporia hippia是该地区的优势种,个体数量分别占总个体数的11.76%、11.63%、11.21%和10.17%。不同生境样线优势类群和常见类群不同。蝴蝶的栖息地偏好与寄主植物有关,蝴蝶的生境分布类型可分为生境广布型、湿润平原型、荒漠半荒漠草原型和山地森林型。蝴蝶群落Shannon-Wiener多样性和丰富度指数以灰榆疏林草地生境最高,优势度最低。各物种在生境内的季节变化趋势与不同生境植被生长季节相关,高峰期为7-8月。不同调查时间蝴蝶的优势种和常见种不同。物种数以7月份调查最多,有33种,占全年调查总物种数的73.33%;5月份调查最少,有20种。蝴蝶群落Shannon-Wiener多样性和丰富度指数以8月份最大,5月份最小。蝴蝶成虫发生类型分为全年发生型、春季型、夏季型和夏秋季型。不同生境和季节发生的优势种可以作为对生境状况进行评估的指示类群。采用CCA分析物种分布与微环境因子的关系,海拔对蝴蝶物种多样性分布格局有显著影响。蝴蝶丰富度与海拔、温度、风速显著正相关。适度干扰有利于蝶类多样性增加,较强的人为干扰会影响蝶类栖息环境,降低蝶类多样性。因此,生境差异性和干扰与蝴蝶群落的物种多样性密切相关,维持贺兰山垂直植被带的生境异质性和保持适度干扰是保护蝴蝶多样性的关键。  相似文献   

6.
【目的】生境类型和环境因子对物种分布和维持具有重要的影响。本研究通过分析不同生境类型对蝴蝶群落多样性及其群落结构影响的差异,以及环境因子对蝴蝶物种丰富度和多度的影响,为区域变动尺度蝴蝶多样性维持机制的研究奠定基础。【方法】于2019年8月和10月,在西双版纳地区采用样线法,调查了天然林、次生林、复合生境、人工林和农田5种生境中蝴蝶的物种,分析了蝴蝶群落多样性、群落结构相似性及物种丰富度和多度与环境因子的关系。【结果】2019年从西双版纳共采集蝴蝶2 226头,隶属于11科98属175种,在西双版纳州级尺度上蝴蝶物种丰富度高于县域尺度。在西双版纳州级尺度上,蝴蝶的物种丰富度和多度在5种生境间存在显著差异,而在县域尺度上,物种丰富度、多度和Chao 1物种丰富度估计值没有一致性规律。群落结构相似性结果显示,在西双版纳州级尺度上,蝴蝶群落结构在不同生境类型间存在极显著差异,在县域尺度上,仅勐腊区域蝴蝶群落结构在不同生境类型间存在显著差异。蝴蝶物种丰富度和多度不仅受到生境类型的影响,还受到温度、年均降水和海拔的影响。【结论】本研究结果表明,在区域变动尺度上,生境类型对西双版纳蝴蝶的多样性的影响较大,而温度、年均降水和海拔是维持蝴蝶物种多样性的重要因素。这些发现对当前人类导致的生境丧失和气候变化时代生物多样性的保护具有重要意义。  相似文献   

7.
Where distribution maps do not exist ecologists often use regional species lists to examine geographic patterns of species richness, despite the fact that inconsistent grain sizes across areas may complicate interpretation of the results. We compare patterns of species richness of European butterflies and dragonflies using regional species lists (varying grain size) and regular grids (constant grain size). We asked if species lists give results comparable to the gridded data when used in simple macroecological analysis of environmental correlates of species richness. We generated two equal-area grids (220 × 220 km and 440 × 440 km) to map the richness gradients and model species richness as a function of actual evapotranspiration (AET) and range in elevation. Then we used species checklists of 33 administrative regions of unequal sizes to construct the same environmental models while accounting for differences in area. Analysis of butterfly checklist data produced comparable results to the analysis of gridded data. In contrast, dragonfly checklist data had a distorted spatial pattern and much weaker associations with environmental variables than the gridded data. The robustness of checklist data appears to be variable, even within a single geographical region, and may not generate patterns congruent with those found using equal-area grids.  相似文献   

8.
Studies on the impact of logging on tropical forest butterflies have been almost exclusively conducted in moist forest habitats. This study considers the impacts of small-scale logging on butterfly communities at three sites of varying disturbance intensity in a tropical dry forest in western Thailand. Butterfly species richness was similar at all sites, but the abundance of butterflies and diversity of the butterfly community decreased with increased logging disturbance. The recorded decrease in diversity at the relatively large sampling scale used lends further support to the hypothesis that disturbance effects are scale dependent. Species abundance data for butterflies fitted a log-normal distribution at all sites, but also a log-series distribution at the two disturbed sites. These analyses suggest a more complex butterfly community at the undisturbed site, but also that log-series and log-normal distributions may not to be sufficiently sensitive to be useful indicators of community changes following logging. Community ordination separates both the butterfly species and transect samples into three distinct regions corresponding to the three study locations. Ordination axes are correlated with tree density, understorey cover and understorey plant richness. Species with the smallest geographic ranges tend to be the least abundant and occurred most frequently in the undisturbed site. The observed diverging responses to disturbance among butterfly families diminishes the value of butterfly communities as biodiversity indicators, and forest managers should perhaps focus on restricted range species or of groups of recognized sensitive species for this purpose.  相似文献   

9.
随着气候变化加剧和人类活动影响,生物多样性变化及其保护逐渐受到广泛关注。蝴蝶作为开花植物的传粉媒介和生态环境监测及评价的关键指示者,其多样性变化能够在一定程度上反映生境状况,因此,有必要清晰认识不同生境中的蝴蝶多样性变化。为明确松嫩平原蝴蝶资源和不同生境的群落多样性差异,采用样线法于2016年5月-2018年8月对松嫩平原的割草草地、湿地、农田、放牧利用草地及恢复草地共五种生境类型进行调查研究。结果发现,调查共记录蝴蝶5108头,隶属于6科21属26种,其中牧女珍眼蝶(Coenonympha amaryllis)和红珠灰蝶(Plebejus argyrognomon)为优势种类,分别占蝴蝶个体总数的25.61%和31.66%,且在五种生境类型中均有分布。不同生境类型中,蝴蝶群落的物种丰富度指数和均匀度指数无明显差异,而恢复草地生境的蝴蝶群落Shannon-Wiener多样性指数较高,优势度指数较低。农田生境中的蝴蝶个体数量较少,且群落组成与其他四种生境之间均具有显著差异。五种生境类型中的蝴蝶数量和多样性均呈现一定的月动态和年动态变化趋势。除湿地和农田外,其余三种生境中蝴蝶物种和个体数量从5月到8月均持续升高。四种生境的蝴蝶物种数量、个体数量(除农田外)在2018年均出现明显下降趋势。物种丰富度指数等指标的月动态和年动态在不同生境类型间存在较大差异。这些结果表明,生境类型和人类活动与蝴蝶多样性变化关系密切,表现为单一生境中蝴蝶多样性较低,复杂生境有利于保护蝴蝶多样性。本研究有助于厘清松嫩平原蝴蝶资源的基础数据,并为该地区蝴蝶多样性保护和利用及评估该区域生态环境提供一定理论支撑。  相似文献   

10.
A survey was conducted on the species composition, richness and abundance of Papilionoidea (excluding Lycaenidae) butterfly fauna in habitats with various degrees of disturbance and altitudes in tropical forests at Tam Dao National Park, northern Vietnam in 2001. The transect method was used to collect data in the survey. Six transects representing different habitat types at two sites, one site located at a low elevation of 200–250 m a.s.l., and the other located at a high elevation of 950–1000 m a.s.l., were chosen: three transects for each site, with a length of 500 m for each transect. A total of 3594 individuals of 127 species in 240 sets of data were recorded from various habitats. The differences in butterfly composition, species richness, abundance and diversity in different habitat types and altitudes were analyzed. The results showed significant differences of butterfly diversity among the different habitat types and between the low and high altitude sites. The butterfly diversity, species richness and species abundance in the low elevation habitats were higher than in the high elevation habitats. The highest diversity of butterflies occurred in the mixed habitats of agriculture, scrub and clearing lands of high disturbance. However, butterflies most important for conservation are associated with undisturbed or moderately disturbed forests only.  相似文献   

11.
Aim We developed a model enabling us to evaluate the contribution of both natural and human‐related factors to butterfly species richness in Catalonia, a Mediterranean area that harbours one of the most diverse butterfly faunas in Europe. Location The study was carried out in Catalonia (north‐east Iberian Peninsula), a region of 31,930 km2 lying between the Pyrenees, the Ebro depression and the Mediterranean sea. Methods Data from the Catalan Butterfly Monitoring Scheme were used to assess butterfly species richness from 55 transects spread all over the region. Three groups of environmental variables likely to affect the presence of butterfly species were calculated, above all from geographic information system data: (1) climatology and topography, (2) vegetation structure and (3) human disturbance. Because climatic and topographic variables are expected to be strongly correlated, we first performed a principal component analysis (PCA) to create a summarizing factor that would account for most of the variance within this set of variables. Subsequently, a backward stepwise multiple regression was performed in order to assess the effects of environmental factors on butterfly species richness. Results A total of 131 species were detected in the monitoring transects, representing 75.7% of the butterfly fauna known from Catalonia. Mean species richness per transect and per year was 41.4, although values varied greatly among sites (range: 14–76.8). The final regression model explained more than 80% of the total variance, which indicated a strong association between butterfly species richness and the studied environmental factors. The model revealed the very important contribution of climatic and topographic variables, which were combined into a single factor in the PCA. In contrast to what has been found in other, more northerly countries, species richness was negatively correlated with temperature and positively correlated with rainfall, except for extreme cold and wet conditions. This may be a consequence of the predictably adverse effects of the Mediterranean summer drought on herbivorous insects, and the fact that the limits of distribution of many butterflies correlate well with climatic variables. Human disturbance (defined as the proportion of urban and agricultural landscape cover in buffer areas of 5 km around the transect sites) was the second most important predictor for species richness. We found that a significant decrease in species numbers was associated with an increase in human pressure, a finding that indicates that not only building development, but also modern‐day agricultural practices are detrimental to the conservation of Mediterranean butterflies. Surprisingly, vegetation variables had an almost negligible effect on butterfly species richness. Main conclusions Our findings strongly indicate that the current motors of global change will have a negative effect on Mediterranean butterfly assemblages. First, changes in land‐use are transforming and fragmenting the landscape into an inhospitable and less permeable matrix for butterflies. Secondly, the negative correlation between species richness and temperature will lead to a predictable loss of diversity over the coming years, as predicted in the most plausible scenarios of climate change. Considering the high butterfly richness characterizing the Mediterranean Basin, this future trend will pose a serious threat to biodiversity.  相似文献   

12.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

13.
Aims (1) To map the species richness of Australian lizards and describe patterns of range size and species turnover that underlie them. (2) To assess the congruence in the species richness of lizards and other vertebrate groups. (3) To search for commonalities in the drivers of species richness in Australian vertebrates. Location Australia. Methods We digitized lizard distribution data to generate gridded maps of species richness and β‐diversity. Using similar maps for amphibians, mammals and birds, we explored the relationship between species richness and temperature, actual evapotranspiration, elevation and local elevation range. We used spatial eigenvector filtering and geographically weighted regression to explore geographical patterns and take spatial autocorrelation into account. We explored congruence between the species richness of vertebrate groups whilst controlling for environmental effects. Results Lizard richness peaks in the central deserts (where β‐diversity is low) and tropical north‐east (where β‐diversity is high). The intervening lowlands have low species richness and β‐diversity. Generally, lizard richness is uncorrelated with that of other vertebrates but this low congruence is strongly spatially structured. Environmental models for all groups also show strong spatial heterogeneity. Lizard richness is predicted by different environmental factors from other vertebrates, being highest in dry and hot regions. Accounting for environmental drivers, lizard richness is weakly positively related to richness of other vertebrates, both at global and local scales. Main conclusions Lizard species richness differs from that of other vertebrates. This difference is probably caused by differential responses to environmental gradients and different centres of diversification; there is little evidence for inter‐taxon competition limiting lizard richness. Local variation in habitat diversity or evolutionary radiations may explain weak associations between taxa, after controlling for environmental variables. We strongly recommend that studies of variation in species richness examine and account for non‐stationarity.  相似文献   

14.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

15.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

16.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

17.
Spatial autocorrelation and red herrings in geographical ecology   总被引:14,自引:1,他引:13  
Aim Spatial autocorrelation in ecological data can inflate Type I errors in statistical analyses. There has also been a recent claim that spatial autocorrelation generates ‘red herrings’, such that virtually all past analyses are flawed. We consider the origins of this phenomenon, the implications of spatial autocorrelation for macro‐scale patterns of species diversity and set out a clarification of the statistical problems generated by its presence. Location To illustrate the issues involved, we analyse the species richness of the birds of western/central Europe, north Africa and the Middle East. Methods Spatial correlograms for richness and five environmental variables were generated using Moran's I coefficients. Multiple regression, using both ordinary least‐squares (OLS) and generalized least squares (GLS) assuming a spatial structure in the residuals, were used to identify the strongest predictors of richness. Autocorrelation analyses of the residuals obtained after stepwise OLS regression were undertaken, and the ranks of variables in the full OLS and GLS models were compared. Results Bird richness is characterized by a quadratic north–south gradient. Spatial correlograms usually had positive autocorrelation up to c. 1600 km. Including the environmental variables successively in the OLS model reduced spatial autocorrelation in the residuals to non‐detectable levels, indicating that the variables explained all spatial structure in the data. In principle, if residuals are not autocorrelated then OLS is a special case of GLS. However, our comparison between OLS and GLS models including all environmental variables revealed that GLS de‐emphasized predictors with strong autocorrelation and long‐distance clinal structures, giving more importance to variables acting at smaller geographical scales. Conclusion Although spatial autocorrelation should always be investigated, it does not necessarily generate bias. Rather, it can be a useful tool to investigate mechanisms operating on richness at different spatial scales. Claims that analyses that do not take into account spatial autocorrelation are flawed are without foundation.  相似文献   

18.
Aim Studies exploring the determinants of geographical gradients in the occurrence of species or their traits obtain data by: (1) overlaying species range maps; (2) mapping survey‐based species counts; or (3) superimposing models of individual species’ distributions. These data types have different spatial characteristics. We investigated whether these differences influence conclusions regarding postulated determinants of species richness patterns. Location Our study examined terrestrial bird diversity patterns in 13 nations of southern and eastern Africa, spanning temperate to tropical climates. Methods Four species richness maps were compiled based on range maps, field‐derived bird atlas data, logistic and autologistic distribution models. Ordinary and spatial regression models served to examine how well each of five hypotheses predicted patterns in each map. These hypotheses propose productivity, temperature, the heat–water balance, habitat heterogeneity and climatic stability as the predominant determinants of species richness. Results The four richness maps portrayed broadly similar geographical patterns but, due to the nature of underlying data types, exhibited marked differences in spatial autocorrelation structure. These differences in spatial structure emerged as important in determining which hypothesis appeared most capable of explaining each map's patterns. This was true even when regressions accounted for spurious effects of spatial autocorrelation. Each richness map, therefore, identified a different hypothesis as the most likely cause of broad‐scale gradients in species diversity. Main conclusions Because the ‘true’ spatial structure of species richness patterns remains elusive, firm conclusions regarding their underlying environmental drivers remain difficult. More broadly, our findings suggest that care should be taken to interpret putative determinants of large‐scale ecological gradients in light of the type and spatial characteristics of the underlying data. Indeed, closer scrutiny of these underlying data — here the distributions of individual species — and their environmental associations may offer important insights into the ultimate causes of observed broad‐scale patterns.  相似文献   

19.
Despite the impact that human presence has on the area, Andorra in the eastern Pyrenees still harbours a rich butterfly fauna and is a potentially excellent area for studying the effects of global change on biodiversity. The aim of this study was to identify and understand the factors that are inducing observed patterns of butterfly richness in Andorra. We used data collected between 2006 and 2010 from six transects of the Andorran Butterfly Monitoring Scheme that lie at heights from 1,000 to 2,400 m a.s.l. These transects are divided into 44 discrete sections and during the study period 18,603 individuals belonging to 126 butterfly species were recorded. The effects of elevation and habitat composition on species richness and abundance were analyzed, as was the presence of spatial structure in the butterfly assemblages. We found a clear tendency for species richness to decrease as elevation increased and also identified a major faunal turnover. Habitat composition seems to have little effect on species richness and butterfly abundance. A spatial structure was observed in the dataset, with a positive spatial autocorrelation at section scale that reflects a clear effect of altitudinal gradient on species assemblages. Finally, a cluster analysis enabled us to define two main faunistic groups, corresponding to lower (generally in closed habitats) and higher sites (generally in subalpine meadows and grasslands). We thus conclude that the elevation gradient is the principal factor driving butterfly distribution and abundance in Andorra.  相似文献   

20.
中国科学院西双版纳热带植物园(简称“版纳植物园”)保存着上万种植物,且生境多样,具有较高的蝴蝶多样性。本研究选择三类代表性生境:片段化雨林、次生林和专类园,聚焦于环境指示物种蝴蝶这一类群,通过样线法系统调查一年内蝴蝶多样性及其变化。观测结果显示:蝴蝶在版纳植物园内全年发生,共调查到其成虫5科126属218种6 015头,其中蛱蝶科多样性最高。蝴蝶种类及数量随月动态变化,生境间有差异,7-8月种类和数量达到最高峰;1月种类最少,而5-6月数量最低;每月均出现的种类仅有12种,绝大部分种类分散发生于不同月份。影响蝴蝶群落多样性的气候因子中,月最高温显著影响蝴蝶群落的物种丰富度和数量,月最低温显著影响物种丰富度、香农多样性和辛普森多样性,月平均温仅显著影响香农多样性。在版纳的三个典型季节中蝴蝶多样性存在差异,雨季物种丰富度最高,干热季香农和辛普森指数最高;雨季和雾凉季蝴蝶群落组成差异大,仅雾凉季与干热季的蝴蝶群落呈现中等程度相似。此外,在片段化雨林、次生林和专类园这3种不同生境中,蝴蝶群落组成也存在差异,蝴蝶物种丰富度和香农指数在次生林中最高,而辛普森指数则是片段化雨林最高;仅次生林与片段化雨林的蝴蝶群落呈现出中等程度相似。本研究揭示了版纳植物园蝴蝶群落的种类组成与月动态变化规律,并明确了不同季节和生境中蝴蝶群落的多样性变化,可为区域蝴蝶多样性观测及保护提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号