首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the kinds and amounts of minor nucleosides of transfer ribonucleic acids (tRNA's) from Bacillus subtilis 168 trpC2 is presented. Identification and quantitation were accomplished using ion exclusion chromatography, thin-layer and paper chromatography, and ultraviolet absorption properties. Nucleosides and their amount in moles per 80 residues are as follows: guanosine (25.7), cytidine (22.0), adenosine (15.2), uridine (13.1), 5-methyluridine (0.98), pseudouridine (1.54), 1-methyladenosine (0.15), N6-methyladenosine (0.01), 7-methyladenosine (0.10), 2-methyladenosine (0.03), 7-methylguanosine (0.20), N2-methylguanosine (0.14), 1-methylguanosine (0.14), a methylated pyrimidine (0.17), a methylated derivative of N6-(delta 2-isopentenyl)adenosine (0.02), ribose methylated nucleosides (0.02), 4-thiouridine (0.12), 2-thio-5-(N-methylaminomethyl) (0.09), and an unknown thionucleoside (0.12). Although the composition is similar to that of Escherichia coli in the proportion of major nucleosides, the content of pseudouridine and 5-methyluridine, and the degree of base and ribose methylation, the composition is more similar to that of the tRNA's of yeast and higher organisms in its lower degree of thiolation, the presence of significant amounts of 1-methyladenosine, and the low levels of 2-methyladenosine and 6-methyladenosine. Therefore, the nucleoside composition of B. subtilis presents some different aspects from those usually given as characteristic for bacterial tRNA's. It is not known whether these differences are due to variation between bacterial species in general or related to the process of differentiation.  相似文献   

2.
A method is described for isolating cytoplasmic mutants of Saccharomyces cerevisiae with lesions in mitochondrial transfer ribonucleic acids (tRNA's). The mutants were selected for slow growth on glycerol and for restoration of wild-type growth by cytoplasmic "petite" testers that contain regions of mitochondrial deoxyribonucleic acid (DNA) with tRNA genes. The aminoacylated mitochondrial tRNA's of several presumptive tRNA mutants were analyzed by reverse-phase chromatography on RPC-5. Two mutant strains, G76-26 and G76-35, were determined to carry mutations in the cysteine and histidine tRNA genes, respectively. The cysteine tRNA mutant was used to isolate cytoplasmic petite mutants whose retained segments of mitochondrial DNA contain the cysteine tRNA gene. The segment of one such mutant (DS504) was sequenced and shown to have the cysteine, histidine, and threonine tRNA genes. The structures of the three mitochondrial tRNA's were deduced from the DNA sequence.  相似文献   

3.
The methylation patterns of transfer and ribosomal ribonucleic acid (RNA) from two mycoplasmas, Mycoplasma capricolum and Acholeplasma laidlawii, have been examined. The transfer RNA from the two mycoplasmas resembled that of other procaryotes in degree of methylation and general diversity of methylated nucleotides, and bore particular resemblance to Bacillus subtilis transfer RNA. The only unusual feature was the absence of m5U from M. capricolum transfer RNA. The methylation patterns of the mycoplasma 16S RNAs were also typically procaryotic, retaining the methylated residues previously shown to be highly conserved among eubacterial 16S RNAs. The mycoplasma 23S RNA methylation patterns were, on the other hand, quite unusual. M. capricolum 23S RNA contained only four methylated residues in stoichiometric amounts, all of which were ribose methylated. A. laidlawii 23S RNA contained the same ribose-methylated residues, plus in addition approximately six m5U residues. These findings are discussed in relation to the phylogenetic status of mycoplasma, as well as the possible role of RNA methylation.  相似文献   

4.
Purified bulk tRNA from Methanococcus vanielii (carbon source, formate) showed variation in the modified nucleoside pattern reported for Escherichia coli as analyzed by both ion-exchange and thin-layer chromatography. Ribothymidine and 7-methylguanosine were absent; 1-methyladenosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, thiolated nucleosides, pseudouridine, dihydrouridine, and O2'-methylcytidine were quantitated. In vitro methylation by M. Vannielii extracts with S-adenosylmethionine and undermethylated E. coli tRNA revealed active tRNA methyltransferases for formation of methylated residues found in native M. vannielii tRNA, but none for the formation of 7-methylguanosine or ribothymidine. The native M. vannielii tRNA became methylated in the 7-methylguanosine position by E. Coli extracts, but ribothymidine was not formed. Both M. vannielii and E. coli tRNA methyltransferases produced unidentified methylated residues in tRNA's lacking or deficient in ribothymidine.  相似文献   

5.
Until recently, the presence in transfer ribonucleic acid (tRNA) of the hydroxylated cytokinin ribosylzeatin [N6-(4-hydroxy-3-methylbut-2-enyl)adenosine]was thought to be unique to higher plants. This extension of work from several laboratories indicates the presence of 2-methylthioribosylzeatin in the tRNA of the plant-associated bacteria Rhizobium leguminosarum, Agrobacterium tumefaciens, and Corynebacterium fascians, but not in that of Erwinia amylovora. This cytokinin has the cis configuration, as is normally found in the tRNA's of plants. The tRNA thionucleotide patterns in these bacteria are different from those of Escherichia coli, Bacillus subtilis, and Salmonella typhimurium, which contain the unhydroxylated analogs of ribosylzeatin or 2-methylthioribosylzeatin.  相似文献   

6.
The synthesis of transfer ribonucleic acid (tRNA) was examined during spore formation and spore outgrowth in Bacillus subtilis by two-dimensional polyacrylamide gel electrophoresis of in vivo 32P-labeled RNA. The two-dimensional gel system separated the B. subtilis tRNA's into 32 well-resolved spots, with the relative abundances ranging from 0.9 to 17% of the total. There were several spots (five to six) resolved which were not quantitated due to their low abundance. All of the tRNA species resolved by this gel system were synthesized at every stage examined, including vegetative growth, different stages of sporulation, and different stages of outgrowth. Quantitation of the separated tRNA's showed that in general the tRNA species were present in approximately the same relative abundances at the different developmental periods. tRNA turnover and compartmentation occurring during sporulation were examined by labeling during vegetative growth followed by the addition of excess phosphate to block further 32P incorporation. The two-dimensional gels of these samples showed the same tRNA's seen during vegetative growth, and they were in approximately the same relative abundances, indicating minimal differences in the rates of turnover of individual tRNA's. Vegetatively labeled samples, chased with excess phosphate into mature spores, also showed all of the tRNA species seen during vegetative growth, but an additional five to six minor spots were also observed. These are hypothesized to arise from the loss of 3'-terminal residues from preexisting tRNA's.  相似文献   

7.
8.
Cytoplasmic initiator transfer ribonucleic acid (tRNAinit) was purified from bulk Torulopsis (Candida) utilis tRNA by a series of column chromatography procedures. Sequence analysis of the products of complete and partial digestion of this tRNA with ribonuclease A [EC 3.1.4.22] and ribonuclease T1 [EC 3.1.4.8] enabled us to determine the complete primary structure of the molecule. The chain length of this tRNA was 76, including 11 modified nucleotides. The structure of the tRNA was arranged into a cloverleaf model and compared with those of other initiator tRNA species. As in the cytoplasmic initiator tRNA's of most other eukaryotic cells, the sequence -A-U-C-G- is contained in this tRNA in place of the usual -T-psi-C-G (or A)- found in other tRNA's.  相似文献   

9.
1. The sites within the tRNA sequence of nucleosides methylated by the action of enzymes from mouse colon, rat kidney and tumours of these tissues acting on tRNA(Asp) from yeast and on tRNA(Glu) (2), tRNA(fMet) and tRNA(Val) (1) from Escherichia coli were determined. 2. The same sites in a particular tRNA were methylated by all of these extracts. Thus tRNA(Glu) (2) was methylated at the cytidine residue at position 48 and the adenosine residue at position 58 from the 5'-end of the molecule; tRNA(Asp) was methylated at the guanosine residue at position 26 from the 5'-end of the molecule; tRNA(fMet) was methylated at the guanosine residues 9 and 27, the cytidine residue 49 and the adenosine residue 59 from the 5'-end; tRNA(Val) (1) was methylated at the guanosine residue 10, the cytidine residue 48 and the adenosine residue 58 from the 5'-end. 3. All of these sites within the clover leaf structure of the tRNA sequence are occupied by a methylated nucleoside in some tRNA species of known sequence. It is concluded that methylation of tRNA from micro-organisms by enzymes from mammalian tissues in vitro probably does accurately represent the specificity of these enzymes in vivo. However, there was no evidence that the tumour extracts, which had considerably greater tRNA methylase activity than the normal tissues, had methylases with altered specificity capable of methylating sites not methylated in the normal tissues.  相似文献   

10.
Seven transfer ribonucleic acid (tRNA) methylase mutants were isolated from Escherichia coli K-12 by examining the ability of RNA prepared from clones of unselected mutagenized cells to accept methyl groups from S-adenosylmethionine catalyzed by crude enzymes from wild-type cells. Five of the mutants had an altered uracil-tRNA methylase; consequently their tRNA's lacked ribothymidine. One mutant had tRNA deficient in 7-methylguanosine, and one mutant contained tRNA lacking 2-thio-5-methylaminomethyluridine. The genetic loci of the three tRNA methylase mutants were distributed over the E. coli genome. The mutant strain deficient in 7-methylguanosine biosynthesis showed a reduced efficiency in the suppression of amber mutations carried by T4 or lambda phages.  相似文献   

11.
By phenol extraction and DEAE cellulose column chromatography, tRNA was isolated from Tetrahymena pyriformis strain GL. Following acid hydrolysis of the tRNA, the methylated purine content was determined by Dowex 50 column chromatography and paper chromatography. The most abundant methylated guanine derivative was found to be N2-DMG. Also present were 1-MG, N2-MG, and 7-MG. The most abundant methylated adenine was found to be 1-MA; no 2-MA was detected. Small amounts of the N6-methyladenines were detected.  相似文献   

12.
Antibodies specific for N6-methyladenosine (m6A) were immobilized on Sepharose and the resulting immunoadsorbent was tested for its ability to retain those Escherichia coli tRNAs containing the antigenic hapten, i.e., m6A. Results obtained with [32P]PO4- and [methyl-3H]-methionine-labeled tRNAs indicated that approximately 3 to 5% of the radioactive RNA was retained by the immunoadsorbent. Under identical conditions, but in the presence of m6A (1 mg/mL), less than 0.2% of the radioactivity was retained. Subsequent characterization of the retained tRNA via (a) analysis of methyl-3H-labeled, methylated nucleosides, (b) two-dimensional gel electrophoresis, and (c) analysis of the retention of [3H]aminoacyl-tRNA species led to the conclusion that the anti-m6A/Sepharose adsorbent quantitatively and exclusively retained a single tRNA species containing m6A, namely, tRNAVal.  相似文献   

13.
Fifteen aminoacyl-transfer ribonucleic acids (tRNA's) from vegetative cells (trophozoites) and mature cysts of Acanthamoeba castellanii were compared by reversed-phase 5 chromatography. Little or no differences were detected in reversed-phase 5 chromatography elution profiles of alanyl-, arginyl-, isoleucyl-, phenylalanyl-, prolyl-, seryl-, threonyl-, tryptophanyl- and valyl-tRNA's. Significant differences in the relative proportions of isoaccepting species of leucyl-, lysyl-, methionyl-, aspartyl-, histidyl-, and tyrosyl-tRNA's were observed. Based upon the criterion of cyanogen bromide reactivity with the modified nucleoside queuosine, the content of queuosine in aspartyl-tRNA of A, castellanii is significantly greater in mature cysts than in trophozoites. The similarity of change in reversed-phase 5 chromatography elution profiles of aspartyl-, histidyl-, and tyrosyl-tRNA suggests that a common mechanism is responsible for alterations in the chromatographic patterns.  相似文献   

14.
Calf thymus DNA was methylated in vitro with cell extracts of Bacillus subtilis OG3R (r+m+) and S-adenosyl[Me-3H]methionine. After depurination of the [3H]methylated DNA, the analysis of the pyrimidine dinucleotides revealed the following positions of the methylated nucleosides (indicated by an asterisk) within the BsuRI recognition sequence: 5' dG--dG--dC--dC dC--dC--dG--dG 5'.  相似文献   

15.
1. tRNA of Bacillus subtilis was found to be variably contaminated with membrane teichoic acid. 2. Samples with high contents of teichoic acid showed no accepting activity for tRNA(Phe) and tRNA(Tyr). 3. Removal of teichoic acid restored accepting activity and fractions containing teichoic acid, separated on Sephadex G-150, inhibited the charging of tRNA(Tyr). 4. The presence of teichoic acid did not inhibit the charging of tRNA(His).  相似文献   

16.
Detailed analyses of tRNA hydrolysates from four tissue types of Nicotiana tabacum, pith from intact plants, pith growing in culture, habituated tissue in culture, and crown gall tumor tissue in culture, revealed significant qualitative and quantitative differences in the pattern of methylation. Although pith from intact plants and pith growing in culture possessed seven different methylated nucleosides, only two were found in habituated and tumorous tissues in culture. Four of the five compounds accounting for the difference were tentatively identified as methylated guanosines. Evaluation of results in terms of several parameters, including growth rate, the tumorous state, habituation, tissue culture, and potential for differentiation, indicate that the extent of tRNA methylation may be correlated with the potential for differentiation of a particular tissue.  相似文献   

17.
Trimethoprim, an inhibitor that prevents tetrahydrofolate-dependent transmethylation reactions inbacteria, was used in a comparative study to discriminate between two possible biosynthetic pathways, either the S-adenosylmethionine or the tetrahydrofolate-dependent formation of ribothymidine (rT) in transfer ribonucleic acids (tRNA's) of several strains of gram-positive and gram-negative microorganisms. rT-deficient tRNA's accumulate in trimethoprim-treated gram-positive Streptococcus faecium, Staphylococcus aureus, Corynebacterium bovis, Arthrobacter albidus, and all examined Bacillaceae, except Bacillus stearothermophilus. The rT-deficient rT-deficient tRNA's accept the methyl moiety from S-adenosylmethionine in vitro, with extracts from Escherichia coli (wild type) as a source of methylating enzymes; 90% of the incorporated methyl groups are present in rT. Trimethoprim does not inhibit the biosynthesis of rT in tRNA of gram-negative Enterobacteriaceae, Rhizobium lupini, and Pseudomonadaceae, suggesting that the rT-specific tRNA methyltransferases of these gram-negative strains use S-adenosylmethionine as coenzyme.  相似文献   

18.
In Bacillus subtilis and Escherichia coli, pulse-labeled ribonucleic acid (RNA) synthesized during step-down growth hybridized preferentially with the heavy (H) strand of methylated albumin-Kieselguhr-fractionated deoxyribonucleic acid (DNA). At high RNA inputs, the ratio of RNA hybridized with the H strand to that hybridized with the light (L) strand was 8.7 for B. subtilis and 2.0 for E. coli. At high DNA inputs, the H/L hybridization ratio increased by a factor of two. This change in the hybridization ratio was attributable to the fraction of the pulse-labeled RNA which is in stable RNA components. The hybridization peak of pulse-labeled RNA was specifically located in the late-eluting region of the absorbance profile of the H strand. This region was considered to represent the most actively transcribing H strand templates.  相似文献   

19.
T W Munns  H F Sims  P A Katzman 《Biochemistry》1975,14(21):4758-4764
Immature rats treated with estradiol for selected periods of time demonstrated both increased methylation of uterine transfer ribonucleic acid (tRNA) and methylase activities. Whereas the former parameter was assessed by incubating whole uteri with [methyl-14C]methionine and measuring the incorporation of isotope into the tRNA, methylase activity was obtained by measuring the rate of incorporation of methyl groups from S-adenosyl[methyl-14C]methionine into heterologous tRNA (Escherichia coli B) in the presence of uterine cytosol preparations (100,000g supernatants). Although increased methylation of tRNA during the estrogen response was demonstrated, additional studies indicated that these results were largely attributable to an increased rate of synthesis of tRNA rather than gross changes in either the type or amount of methylated constituents present. Evidence in this regard included the inability of estrogen treatment of alter significantly the (a) resulting patterns of methyl-14C-methylated constituents of uterine tRNA, (b) the extent ot which [2-14C]guanine residues, incorporated into tRNA, become methylated, (c) the extent of methylation of precursor tRNA in the absence of tRNA synthesis, and (d) the types of methylase activities expressed in vitro.  相似文献   

20.
Growth of a strain of Bacillus subtilis that requires uracil, thymine, adenine, and tryptophan in the presence of 5-fluorouracil (FU) results in the synthesis of ribonucleic acid (RNA) and ribosomes in which 55 to 65% of the RNA uracil has been replaced by the fluorine derivative. Examination of analogue-containing ribosomes by sucrose density gradient centrifugation and thermal denaturation studies suggests that, as far as the size, shape, and packing structure are concerned, extensive FU substitution has little or no effect. FU appears to replace uracil in RNA without selectivity for one RNA class over another, as determined by methylated albumin-kieselguhr column chromatography and sucrose density gradient centrifugation. The total amino acid content of the cells is markedly affected by growth in the presence of FU. The possibility of an FU effect on genetic translation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号