首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A PCR enzyme-linked immunosorbent assay (ELISA) assay was applied to the detection of Campylobacter jejuni and Campylobacter coli in environmental water samples after enrichment culture. Bacterial cells were concentrated from 69 environmental water samples by using filtration, and the filtrates were cultured in Campylobacter blood-free broth. After enrichment culture, DNA was extracted from the samples by using a rapid-boiling method, and the DNA extracts were used as a template in a PCR ELISA assay. A total of 51 samples were positive by either PCR ELISA or culture; of these, 43 were found to be positive by PCR ELISA and 43 were found to be positive by culture. Overall, including positive and negative results, 59 samples were concordant in both methods. Several samples were positive in the PCR ELISA assay but were culture negative; therefore, this assay may be able to detect sublethally damaged or viable nonculturable forms of campylobacters. The method is rapid and sensitive, and it significantly reduces the time needed for the detection of these important pathogens by 2 to 3 days.  相似文献   

2.
The rapid detection of food-borne bacterial pathogens as part of a quality control program is necessary for the maintenance of a safe food supply. In this report, we present our findings for an immunocapture PCR method for the detection of Campylobacter jejuni in foods. The method permits direct detection of the pathogen without an enrichment step and can be performed in approximately 8 h. Assay results are quantitative, and one cell in a milliliter sample can be detected. Application of the method to spiked milk samples and chicken skin washes did not affect the sensitivity of the assay.  相似文献   

3.
A PCR enzyme-linked immunosorbent assay (ELISA) assay was applied to the detection of Campylobacter jejuni and Campylobacter coli in environmental water samples after enrichment culture. Bacterial cells were concentrated from 69 environmental water samples by using filtration, and the filtrates were cultured in Campylobacter blood-free broth. After enrichment culture, DNA was extracted from the samples by using a rapid-boiling method, and the DNA extracts were used as a template in a PCR ELISA assay. A total of 51 samples were positive by either PCR ELISA or culture; of these, 43 were found to be positive by PCR ELISA and 43 were found to be positive by culture. Overall, including positive and negative results, 59 samples were concordant in both methods. Several samples were positive in the PCR ELISA assay but were culture negative; therefore, this assay may be able to detect sublethally damaged or viable nonculturable forms of campylobacters. The method is rapid and sensitive, and it significantly reduces the time needed for the detection of these important pathogens by 2 to 3 days.  相似文献   

4.
Aims: We describe a real‐time quantitative multiplex polymerase chain reaction (qmPCR) assay to identify and discriminate between isolates of Campylobacter jejuni and Campylobacter coli. Methods and Results: Two novel sets of primers and hydrolysis probes were designed to amplify the unique DNA sequences within the hipO, ccoN and cadF genes that are specific to Camp. jejuni and Camp. coli. Using the designed optimized qmPCR assay conditions, the amplification efficiency is in range from 108 to 116%. These qmPCR assays are highly specific for Camp. jejuni and Camp. coli, as seen through testing of 40 Campylobacter strains and 17 non‐Campylobacter strains. In chicken juice and tap water models spiked with known quantities of Camp. jejuni, qmPCR detected 102–103 CFU ml?1 within 4 h. Conclusions: The qmPCR assays developed in this study provide reliable and simultaneous detection and quantification of Camp. jejuni and Camp. coli, with good amplification reaction parameters. Significance and Impact of the Study: Following further validation, the qmPCR assay reported here has the potential to be applied to various sample types as an alternative and rapid methodology.  相似文献   

5.
H.N. RASMUSSEN, J.E. OLSEN, K. JØRGENSEN AND O.F. RASMUSSEN. 1996. PCR primers were selected from the flagellin gene sequences flaA and flaB of Campylobacter coli to amplify DNA from Camp. jejuni and Camp. coli. When the PCR products were analysed by hybridization to an internal probe immobilized in microtitre wells, positive reactions were observed only for strains of Camp. jejuni and Camp. coli. The assay was used to analyse 31 chicken faecal samples. Full correspondence was found between the PCR assay conducted on the enriched cultures and the standard culture method. When analysing the transport medium prior to enrichment, the PCR assay detected nine of 11 culture positive samples.  相似文献   

6.
A rapid and sensitive assay was developed for detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples. Water and sewage samples were filtered, and the filters were enriched overnight in a nonselective medium. The enrichment cultures were prepared for PCR by a rapid and simple procedure consisting of centrifugation, proteinase K treatment, and boiling. A seminested PCR based on specific amplification of the intergenic sequence between the two Campylobacter flagellin genes, flaA and flaB, was performed, and the PCR products were visualized by agarose gel electrophoresis. The assay allowed us to detect 3 to 15 CFU of C. jejuni per 100 ml in water samples containing a background flora consisting of up to 8, 700 heterotrophic organisms per ml and 10,000 CFU of coliform bacteria per 100 ml. Dilution of the enriched cultures 1:10 with sterile broth prior to the PCR was sometimes necessary to obtain positive results. The assay was also conducted with food samples analyzed with or without overnight enrichment. As few as 相似文献   

7.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37°C for 24 h, followed by 42°C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

8.
AIMS: DuPont Qualicon recently developed a new PCR assay for the identification of Campylobacter jejuni and Campylobacter coli. We evaluated the selectivity and utility of this assay compared with a PCR method already in use in our laboratory. METHODS AND RESULTS: A group of 133 Campylobacter isolates from poultry carcass rinse samples were screened using the commercial PCR and standard PCR. Identical results were found for 89.5% (119/133) of the isolates. However, 10.5% (14/133) gave conflicting results suggesting mixed cultures. These 14 strains were retested by both PCR methods. Of these, 78.6% (11/14) showed identical results for both PCR methods after retesting; the results for the remaining 21.4% (3/14) again indicated mixed cultures. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF STUDY: The new multiplex PCR is a rapid and accurate alternative to more conventional PCR methods. The persistence of mixed Campylobacter cultures noted in this study suggests certain strains may be very difficult to isolate clonally by standard culture methods.  相似文献   

9.
Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes.Botulinum neurotoxins (BoNTs) are the most toxic agents known, and as little as 30 ng neurotoxin is potentially lethal to humans (36). These toxins are responsible for botulism, a disease characterized by flaccid paralysis. Seven antigenically distinct BoNTs are known (types A to G), and BoNT types A, B, E, and F are the principal types associated with human botulism (37). Significant sequence diversity and antigenically variable subtypes have recently been reported for the type A, B, and E neurotoxin genes (14, 22, 23, 42).Apart from the species Clostridium botulinum, which itself consists of four phylogenetically distinct groups of organisms, some strains of other clostridia, namely Clostridium butyricum and Clostridium baratii, are also known to produce BoNTs (2, 4, 7, 13, 20, 26, 34, 44). Also, strains that produce two toxins and strains carrying silent toxin genes have been reported (8, 22, 24, 39). Due to the great physiological variation of the BoNT-producing clostridia, their isolation and identification cannot depend solely on biochemical characteristics (32). Indeed, the standard culture methods take into consideration only C. botulinum and not C. baratii and C. butyricum, and identification and confirmation require detection of BoNT by a standard mouse bioassay (SMB) (12). The SMB is highly sensitive and specific but also expensive, time-consuming, and undesirable because of the use of experimental animals. Detection of neurotoxin gene fragments by PCR is a rapid alternative method for detection and typing of BoNT-producing clostridia (3). Different PCR methods have been described for detecting neurotoxin type A-, B-, E-, and F-producing clostridia (9, 15-18, 21, 40, 41).A previously described multiplex PCR method able to simultaneously detect type A, B, E, and F neurotoxin genes is a useful tool for rapid detection of the BoNT-producing clostridia (31). While this method generally has a high level of inclusivity for detection of type B, E, and F neurotoxin genes, limitations for detection of the recently described subtype A2, A3, and A4 strains have been identified (6, 28). To increase the efficiency of this multiplex PCR method, new primers were designed to detect genes for all identified type A neurotoxin subtypes (19). Additionally, an internal amplification control (IAC) was added according to ISO 22174/2005. The specificity and selectivity of this multiplex PCR method were evaluated in comparison with an SMB (12) using target and nontarget strains, and the robustness was assessed using clinical, food, and environmental samples. Moreover, to evaluate the applicability of this multiplex PCR method, a survey with food and environmental samples was performed in a German food control laboratory.  相似文献   

10.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the β-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

11.
Contamination of retail poultry by Campylobacter spp. and Salmonella enterica is a significant source of human diarrheal disease. Isolation and identification of these microorganisms require a series of biochemical and serological tests. In this study, Campylobacter ceuE and Salmonella invA genes were used to design probes in PCR-enzyme-linked immunosorbent assay (ELISA), as an alternative to conventional bacteriological methodology, for the rapid detection of Campylobacter jejuni, Campylobacter coli, and S. enterica from poultry samples. With PCR-ELISA (40 cycles), the detection limits for Salmonella and Campylobacter were 2 × 102 and 4 × 101 CFU/ml, respectively. ELISA increased the sensitivity of the conventional PCR method by 100- to 1,000-fold. DNA was extracted from carcass rinses and tetrathionate enrichments and used in PCR-ELISA for the detection of Campylobacter and S. enterica, respectively. With PCR-ELISA, Salmonella was detected in 20 of 120 (17%) chicken carcass rinses examined, without the inclusion of an enrichment step. Significant correlation was observed between PCR-ELISA and cultural methods (kappa = 0.83; chi-square test, P < 0.001) with only one false negative (1.67%) and four false positives (6.67%) when PCR-ELISA was used to screen 60 tetrathionate enrichment cultures for Salmonella. With PCR-ELISA, we observed a positive correlation between the ELISA absorbance (optical density at 405 nm) and the campylobacter cell number in carcass rinse, as determined by standard culture methods. Overall, PCR-ELISA is a rapid and cost-effective approach for the detection and enumeration of Salmonella and Campylobacter bacteria on poultry.  相似文献   

12.
Campylobacter have emerged as the most common bacterial food-borne illness in the developed world. The ability to reduce Campylobacter infections in humans is linked to the full comprehension of the principal key aspects of its infection cycle. A microbial diagnostic microarray detecting Campylobacter housekeeping, structural, and virulence associated genes was designed and validated using genomic DNA from reference and field strains of Campylobacter jejuni and coli isolated from human, chicken, and raw milk. This microarray was confirmed to be a powerful diagnostic tool for monitoring emerging Campylobacter pathotypes as well as for epidemiological, environmental, and phylogenetic studies including the evaluation of genome plasticity.  相似文献   

13.
The aim of this study was to evaluate PCR and fluorescent in situ hybridization (FISH) techniques for detecting Arcobacter and Campylobacter strains in river water and wastewater samples. Both 16S and 23S rRNA sequence data were used to design specific primers and oligonucleotide probes for PCR and FISH analyses, respectively. In order to assess the suitability of the methods, the assays were performed on naturally and artificially contaminated samples and compared with the isolation of cells on selective media. The detection range of PCR and FISH assays varied between 1 cell/ml (after enrichment) to 103 cells/ml (without enrichment). According to our results, both rRNA-based techniques have the potential to be used as quick and sensitive methods for detection of campylobacters in environmental samples.  相似文献   

14.
Fourier transform infrared spectroscopy (FT-IR) has been used together with pattern recognition methodology to study isolates belonging to the species Campylobacter coli and Campylobacter jejuni and to compare FT-IR typing schemes with established genomic profiles based on enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Seventeen isolates were cultivated under standardized conditions for 2, 3, and 4 days to study variability and improve reproducibility. ERIC-PCR profiles and FT-IR spectra were obtained from strains belonging to the species Campylobacter coli and C. jejuni, normalized, and explored by hierarchical clustering and stepwise discriminant analysis. Strains could be differentiated by using mainly the first-derivative FT-IR spectral range, 1,200 to 900 cm(-1) (described as the carbohydrate region). The reproducibility index varied depending on the ages of the cultures and on the spectral ranges investigated. Classification obtained by FT-IR spectroscopy provided valuable taxonomic information and was mostly in agreement with data from the genotypic method, ERIC-PCR. The classification functions obtained from the discriminant analysis allowed the identification of 98.72% of isolates from the validation set. FT-IR can serve as a valuable tool in the classification, identification, and typing of thermophilic Campylobacter isolates, and a number of types can be differentiated by means of FT-IR spectroscopy.  相似文献   

15.
16.
17.
PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells.Legionella organisms are ubiquitous bacteria found in many types of water sources in the environment. Their growth is especially favored in human-made warm water systems, including cooling towers, hot tubs, showerheads, and spas (3, 14, 15, 38). Legionella bacteria replicate as intracellular parasites of amoebae and persist in the environment as free-living microbes or in biofilms. In aerosol form, they enter the lungs and can cause an acute form of pneumonia known as Legionnaires'' disease or a milder form of pulmonary infection called Pontiac fever. The species Legionella pneumophila is responsible for the vast majority of the most severe form of this atypical pneumonia (52, 70). Legionellosis outbreaks are associated with high mortality rates (15 to 20%) (15, 16, 38, 46), which can reach up to 50% for people with weakened immune systems (immunocompromised patients) (69). Legionella surveillance programs include regular monitoring of environmental water samples (9, 13, 66). It is generally acknowledged that Legionella represents a health risk to humans when cell densities are greater than 104 to 105 CFU per liter of water, and epidemiological data show that outbreaks of legionellosis occur at these concentrations (36, 47).The evaluation of the risk associated with Legionella has traditionally been performed using culture-based methods (1, 24). Culture is essential for identifying and typing Legionella strains during epidemics. However, Legionella culture requires long incubation times (up to 10 days) before results can be scored. This problem makes culture unsuitable for preventive actions and rapid response in emergency situations. Moreover, under certain conditions (i.e., low-nutrient environments, oxidative or osmotic stress, etc.), Legionella cells can lose the ability to be cultured, although they are still viable (7, 17, 20, 22, 39, 45, 67). These viable but nonculturable (VBNC) Legionella cells may still represent a public health hazard because they can regain their ability to grow in new, more favorable conditions (12, 19, 23, 61).Molecular approaches, such as quantitative real-time PCR (qPCR), are faster and can mitigate the main drawbacks of culture-based methods. qPCR is an alternative tool that offers rapid, sensitive, and specific detection of Legionella bacteria in environmental water samples (4, 5, 12, 26, 65, 68). PCR results can be obtained in hours instead of days, and VBNC Legionella cells can also be detected (12, 26). However, the major disadvantage of qPCR lies in its inability to evaluate viability due to the persistence of DNA in cells after death (27, 34). The monitoring of Legionella contamination levels by conventional qPCR may thus result in an overestimation of the risk of infection because false-positive results can be scored. However, the real risk from Legionella is limited to the live fraction of the total Legionella population. Only live or viable Legionella cells are able to replicate in pulmonary macrophages and cause severe pneumonia (14, 15). The development of more rapid, culture-independent methods capable of discriminating between live and dead cells is of major interest for measuring Legionella infection risks and preventing legionellosis. The nucleic acid-binding dye ethidium monoazide bromide (EMA), used in combination with qPCR, is an attractive alternative for selectively detecting and enumerating viable bacteria. EMA is particularly useful because it selectively penetrates cells with damaged membranes and covalently binds to DNA after photoactivation (21, 53). DNA-bound EMA molecules prevent PCR amplification and thereby lead to a strong signal reduction during qPCR. DNA from viable cells with intact cell membranes prevents EMA molecules from entering the cell and therefore can be amplified and quantified (56). Nocker et al. (41, 42) suggested that the signal reduction was due to a selective loss of genomic DNA from dead cells (rendered insoluble after cross-linkage) during the DNA extraction procedure rather than to PCR inhibition. However, Soejima et al. (59, 60) recently reported that treatment with EMA followed by visible light irradiation directly cleaves the chromosomal DNA of dead bacteria.In this study we optimized the EMA-staining procedure in conjunction with qPCR with pure cultures of L. pneumophila. We analyzed the potential for the EMA-qPCR method to discriminate Legionella cells with compromised or intact cell membranes. We optimized this EMA-qPCR technique, viability PCR, hereafter named v-PCR, and used it to quantify viable Legionella cells in environmental water samples. We compared our results with those obtained by conventional qPCR and culture methods. In addition, we evaluated the ability of v-PCR to monitor the efficacy of different disinfection strategies.  相似文献   

18.
By using 50 unabsorbed antisera, we were able to serotype 272 (65.7%) of 414 thermotolerant campylobacters from wild and domestic animals, on the basis of heat-stable antigens identified by means of passive hemagglutination. Forty-two serotypes were recognized. The pattern of serotypes detected in the various animal species was compared to human clinical isolates by using the Czekanowski index (proportional similarity index). The highest degree of similarity to the clinical isolates was observed for the poultry isolates, followed by strains from wild birds, flies, and pigs (in order of decreasing similarity). The serotypes recovered most frequently from poultry (LAU 1 and LAU 2) were also most prevalent in Norwegian patients. In contrast, serotype LAU 35/44, the predominant porcine serotype, was never recovered from human clinical specimens. Flies captured in chicken farms and in piggeries harbored serotypes which were also commonly seen in chickens and pigs, respectively. Nine of the strains included in this study could not be ascribed to any defined species. All of these were resistant to nalidixic acid and did not produce H2S.  相似文献   

19.
20.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5′-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejuni tested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号