首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human telomerase catalyzes nucleolytic primer cleavage   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
De novo telomere addition by Tetrahymena telomerase in vitro.   总被引:5,自引:1,他引:4  
Previous molecular genetic studies have shown that during programmed chromosomal healing, telomerase adds telomeric repeats directly to non-telomeric sequences in Tetrahymena, forming de novo telomeres. However, the biochemical mechanism underlying this process is not well understood. Here, we show for the first time that telomerase activity is capable in vitro of efficiently elongating completely non-telomeric DNA oligonucleotide primers, consisting of natural telomere-adjacent or random sequences, at low primer concentrations. Telomerase activity isolated from mated or vegetative cells had indistinguishable specificities for nontelomeric and telomeric primers. Consistent with in vivo results, the sequence GGGGT... was the predominant initial DNA sequence added by telomerase in vitro onto the 3' end of the non-telomeric primers. The 3' and 5' sequences of the primer both influenced the efficiency and pattern of de novo telomeric DNA addition. Priming of telomerase by double-stranded primers with overhangs of various lengths showed a requirement for a minimal 3' overhang of 20 nucleotides. With fully single-stranded non-telomeric primers, primer length up to approximately 30 nucleotides strongly affected the efficiency of telomeric DNA addition. We propose a model for the primer binding site of telomerase for non-telomeric primers to account for these length and structural requirements. We also propose that programmed de novo telomere addition in vivo is achieved through a hitherto undetected intrinsic ability of telomerase to elongate completely non-telomeric sequences.  相似文献   

4.
5.
Human POT1 facilitates telomere elongation by telomerase   总被引:39,自引:0,他引:39  
Mammalian telomeric DNA is mostly composed of double-stranded 5'-TTAGGG-3' repeats and ends with a single-stranded 3' overhang. Telomeric proteins stabilize the telomere by protecting the overhang from degradation or by remodeling the telomere into a T loop structure. Telomerase is a ribonucleoprotein that synthesizes new telomeric DNA. In budding yeast, other proteins, such as Cdc13p, that may help maintain the telomere end by regulating the recruitment or local activity of telomerase have been identified. Pot1 is a single-stranded telomeric DNA binding protein first identified in fission yeast, where it was shown to protect telomeres from degradation [10]. Human POT1 (hPOT1) protein is known to bind specifically to the G-rich telomere strand. We now show that hPOT1 can act as a telomerase-dependent, positive regulator of telomere length. Three splice variants of hPOT1 were overexpressed in a telomerase-positive human cell line. All three variants lengthened telomeres, and splice variant 1 was the most effective. hPOT1 was unable to lengthen the telomeres of telomerase-negative cells unless telomerase activity was induced. These data suggest that a normal function of hPOT1 is to facilitate telomere elongation by telomerase.  相似文献   

6.
7.
Telomerase is a ribonucleoprotein enzyme that adds telomeric sequence repeats to the ends of linear chromosomes. In vitro, telomerase has been observed to add repeats to a DNA oligonucleotide primer in a processive manner, leading to the postulation of a DNA anchor site separate from the catalytic site of the enzyme. We have substituted photoreactive 5-iododeoxypyrimidines into the DNA oligonucleotide primer d(T4G4T4G4T4G2) and, upon irradiation, obtained cross-links with the anchor site of telomerase from Euplotes aediculatus nuclear extract. No cross-linking occurred with a primer having the same 5' end and a nontelomeric 3' end. These cross-links were shown to be between the DNA primer and (i) a protein moiety of approximately 130 kDa and (ii) U51-U52 of the telomerase RNA. The cross-linked primer could be extended by telomerase in the presence of [alpha-32P]dGTP, thus indicating that the 3' end was bound in the enzyme active site. The locations of the cross-links within the single-stranded primers were 20 to 22 nucleotides upstream of the 3' end, providing a measure of the length of DNA required to span the telomerase active and anchor sites. When the single-stranded primers are aligned with the G-rich strand of a Euplotes telomere, the cross-linked nucleotides correspond to the duplex region. Consistent with this finding, a cross-link to telomerase was obtained by substitution of 5-iododeoxycytidine into the CA strand of the duplex region of telomere analogs. We conclude that the anchor site in the approximately 130-kDa protein can bind duplex as well as single-stranded DNA, which may be critical for its function at chromosome ends. Quantitation of the processivity with single-stranded DNA primers and double-stranded primers with 3' tails showed that only 60% of the primer remains bound after each repeat addition.  相似文献   

8.
The chromosomal ends of Trypanosoma brucei, like those of most eukaryotes, contain conserved 5'-TTAGGG-3' repeated sequences and are maintained by the action of telomerase. Fractionated T. brucei cell extracts with telomerase activity were used as a source of potential regulatory factors or telomerase-associated components that might interact with T. brucei telomeres. Electrophoretic mobility shift assays and UV cross-linking were used to detect possible single-stranded telomeric protein.DNA complexes and to estimate the approximate size of the protein constituents. Three single-stranded telomeric protein.DNA complexes were observed. Complex C3 was highly specific for the G-strand telomeric repeat sequence and shares biochemical characteristics with G-rich, single-stranded telomeric binding proteins and with components of the telomerase holoenzyme described in yeast, ciliates, and humans. Susceptibility to RNase A or chemical nuclease (hydroxyl radical) pre-treatment showed that complex C3 was tightly associated with an RNA component. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry was used to estimate the molecular mass of the peptides obtained by in-gel Lys-C digestion of low abundance C3-associated proteins. The molecular masses of the peptides showed no homologies with other proteins from trypanosomes or with any protein in the data bases screened.  相似文献   

9.
The human telomeric protein POT1 is known to bind single-stranded telomeric DNA in vitro and to participate in the regulation of telomere maintenance by telomerase in vivo. We examined the in vitro DNA binding features of POT1. We report that deleting the oligosaccharide/oligonucleotide-binding fold of POT1 abrogates its DNA binding activity. The minimal binding site (MBS) for POT1 was found to be the telomeric nonamer 5'-TAGGGTTAG-3', and the optimal substrate is [TTAGGG](n (n > or = 2)). POT1 displays exceptional sequence specificity when binding to MBS, tolerating changes only at position 7 (T7A). Whereas POT1 binding to MBS or [TTAGGG](2) was enhanced by the proximity of a 3' end, POT1 was able to bind to a [TTAGGG](5) array when positioned internally. These data indicate that POT1 has a strong sequence preference for the human telomeric repeat tract and predict that POT1 can bind both the 3' telomeric overhang and the displaced TTAGGG repeats at the base of the t-loop.  相似文献   

10.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

11.
The Saccharomyces cerevisiae Mre11p/Rad50p/Xrs2p (MRX) complex is evolutionarily conserved and functions in DNA repair and at telomeres [1-3]. In vivo, MRX is required for a 5' --> 3' exonuclease activity that mediates DNA recombination at double-strand breaks (DSBs). Paradoxically, abolition of this exonuclease activity in MRX mutants results in shortened telomeric DNA tracts. To further explore the role of MRX at telomeres, we analyzed MRX mutants in a de novo telomere addition assay in yeast cells [4]. We found that the MRX genes were absolutely required for telomerase-mediated addition in this assay. Furthermore, we found that Cdc13p, a single-stranded telomeric DNA binding protein essential for telomere DNA synthesis and protection [5], was unable to bind to the de novo telomeric DNA substrate in cells lacking Rad50p. Based on the results from this model system, we propose that the MRX complex helps to prepare telomeric DNA for the loading of Cdc13p, which then protects the chromosome from further degradation and recruits telomerase and other DNA replication components to synthesize telomeric DNA.  相似文献   

12.
Induction of parallel human telomeric G-quadruplex structures by Sr(2+)   总被引:1,自引:0,他引:1  
Human telomeric DNA forms G-quadruplex secondary structures, which can inhibit telomerase activity and are targets for anti-cancer drugs. Here we show that Sr(2+) can induce human telomeric DNA to form both inter- and intramolecular structures having characteristics consistent with G-quadruplexes. Unlike Na(+) or K(+), Sr(2+) facilitated intermolecular structure formation for oligonucleotides with 2 to 5 5'-d(TTAGGG)-3' repeats. Longer 5'-d(TTAGGG)-3' oligonucleotides formed exclusively intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in the 1st, 3rd, or 4th repeats of 5'-d(TTAGGG)(4)-3' stabilized the formation of intermolecular structures. However, a more compact, intramolecular structure was still observed when the 2nd repeat was altered. Circular dichroism spectroscopy results suggest that the structures were parallel-stranded, distinguishing them from similar DNA sequences in Na(+) and K(+). This study shows that Sr(2+), promotes parallel-stranded, inter- and intramolecular G-quadruplexes that can serve as models to study DNA substrate recognition by telomerase.  相似文献   

13.
14.
Recognition and elongation of telomeres by telomerase   总被引:9,自引:0,他引:9  
Telomeres stabilize chromosomal ends and allow their complete replication in vivo. In diverse eukaryotes, the essential telomeric DNA sequence consists of variable numbers of tandem repeats of simple, G + C rich sequences, with a strong strand bias of G residues on the strand oriented 5' to 3' toward the chromosomal terminus. This strand forms a protruding 3' over-hang at the chromosomal terminus in three different eukaryotes analyzed. Analysis of yeast and protozoan telomeres showed that telomeres are dynamic structures in vivo, being acted on by shortening and lengthening activities. We previously identified and partially purified an enzymatic activity, telomere terminal transferase, or telomerase, from the ciliate Tetrahymena. Telomerase is a ribonucleoprotein enzyme with essential RNA and protein components. This activity adds repeats of the Tetrahymena telomeric sequence, TTGGGG, onto the 3' end of a single-stranded DNA primer consisting of a few repeats of the G-rich strand of known telomeric, and telomere-like, sequences. The shortest oligonucleotide active as a primer was the decamer G4T2G4. Structural analysis of synthetic DNA oligonucleotides that are active as primers showed that they all formed discrete intramolecular foldback structures at temperatures below 40 degrees C. Addition of TTGGGG repeats occurs one nucleotide at a time by de novo synthesis, which is not templated by the DNA primer. Up to 8000 nucleotides of G4T2 repeats were added to the primer in vitro. We discuss the implications of this finding for regulation of telomerase in vivo and a model for telomere elongation by telomerase.  相似文献   

15.
16.
17.
18.
During telomere replication in yeast, chromosome ends acquire a long single-stranded extension of the strand making the 3' end. Previous work showed that these 3' tails are generated late in S-phase, when conventional replication is virtually complete. In addition, the extensions were also observed in cells that lacked telomerase. Therefore, a model was proposed that predicted an activity that recessed the 5' ends at yeast telomeres after conventional replication was complete. Here, we demonstrate that this processing activity is dependent on the passage of a replication fork through yeast telomeres. A non-replicating linear plasmid with telomeres at each end does not acquire single-stranded extensions, while an identical construct containing an origin of replication does. Thus, the processing activity could be associated with the enzymes at the replication fork itself, or the passage of the fork through the telomeric sequences allows a transient access for the activity to the telomeres. We therefore propose that there is a mechanistic link between the conventional replication machinery and telomere maintenance.  相似文献   

19.
Zein SS  Levene SD 《Biochemistry》2005,44(12):4817-4828
Telomeric DNA sequences in human cells and those of other vertebrates consist of long d(TTAGGG) repeats. In somatic cells, telomeres shorten every cell division with shortening serving as a mitotic clock that counts cell divisions and ultimately results in cellular senescence. Telomere length is principally maintained by a ribonucleoprotein, telomerase. However, a non-negligible proportion of human cells use a recombination-based mechanism for telomere maintenance, termed alternative maintenance of telomeres (ALT). Although the molecular mechanism of ALT is not known, GT-rich sequences in prokaryotes and eukaryotes display high levels of recombination relative to those of non-GT-rich DNA. We show that human telomeric strand-exchange complexes mediated by Escherichia coli RecA protein differ from those formed with nontelomeric sequences. Moreover, telomeric strand-exchange intermediates, unlike those involving nontelomeric sequences, exhibit a tendency to form higher-order nucleoprotein structures. We propose that the strong DNA unwinding activity inherent in the assembly of the RecA strand-exchange complex promotes the formation of alternative DNA structures at human telomeric loci. Organization of these noncanonical structures into higher-order complexes involving multiple DNA duplexes could facilitate the search for homology on different DNA molecules and provide a framework for understanding recombination-dependent mechanisms of telomere maintenance.  相似文献   

20.
Saccharomyces cerevisiae RAD50 and MRE11 genes are required for the nucleolytic processing of DNA double-strand breaks. We have overexpressed Rad50 and Mre11 in yeast cells and purified them to near homogeneity. Consistent with the genetic data, we show that the purified Rad50 and Mre11 proteins form a stable complex. In the Rad50.Mre11 complex, the protein components exist in equimolar amounts. Mre11 has a 3' to 5' exonuclease activity that results in the release of mononucleotides. The addition of Rad50 does not significantly alter the exonucleolytic function of Mre11. Using homopolymeric oligonucleotide-based substrates, we show that the exonuclease activity of Mre11 and Rad50.Mre11 is enhanced for substrates with duplex DNA ends. We have examined the endonucleolytic function of Mre11 on defined, radiolabeled hairpin structures that also contain 3' and 5' single-stranded DNA overhangs. Mre11 is capable of cleaving hairpins and the 3' single-stranded DNA tail. These endonuclease activities of Mre11 are enhanced markedly by Rad50 but only in the presence of ATP. Based on these results, we speculate that the Mre11 nuclease complex may mediate the nucleolytic digestion of the 5' strand at secondary structures formed upon DNA strand separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号