共查询到20条相似文献,搜索用时 15 毫秒
1.
A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity. 相似文献
2.
Kwak YG Hu N Wei J George AL Grobaski TD Tamkun MM Murray KT 《The Journal of biological chemistry》1999,274(20):13928-13932
The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible. 相似文献
3.
Cheng L Yung A Covarrubias M Radice GL 《The Journal of biological chemistry》2011,286(23):20478-20489
The intercalated disc serves as an organizing center for various cell surface components at the termini of the cardiomyocyte, thus ensuring proper mechanoelectrical coupling throughout the myocardium. The cell adhesion molecule, N-cadherin, is an essential component of the intercalated disc. Cardiac-specific deletion of N-cadherin leads to abnormal electrical conduction and sudden arrhythmic death in mice. The mechanisms linking the loss of N-cadherin in the heart and spontaneous malignant ventricular arrhythmias are poorly understood. To investigate whether ion channel remodeling contributes to arrhythmogenesis in N-cadherin conditional knock-out (N-cad CKO) mice, cardiac myocyte excitability and voltage-gated potassium channel (Kv), as well as inwardly rectifying K(+) channel remodeling, were investigated in N-cad CKO cardiomyocytes by whole cell patch clamp recordings. Action potential duration was prolonged in N-cad CKO ventricle myocytes compared with wild type. Relative to wild type, I(K,slow) density was significantly reduced consistent with decreased expression of Kv1.5 and Kv accessory protein, Kcne2, in the N-cad CKO myocytes. The decreased Kv1.5/Kcne2 expression correlated with disruption of the actin cytoskeleton and reduced cortactin at the sarcolemma. Biochemical experiments revealed that cortactin co-immunoprecipitates with Kv1.5. Finally, cortactin was required for N-cadherin-mediated enhancement of Kv1.5 channel activity in a heterologous expression system. Our results demonstrate a novel mechanistic link among the cell adhesion molecule, N-cadherin, the actin-binding scaffold protein, cortactin, and Kv channel remodeling in the heart. These data suggest that in addition to gap junction remodeling, aberrant Kv1.5 channel function contributes to the arrhythmogenic phenotype in N-cad CKO mice. 相似文献
4.
Uebele Victor N.; England Sarah K.; Gallagher Daniel J.; Snyders Dirk J.; Bennett Paul B.; Tamkun Michael M. 《American journal of physiology. Cell physiology》1998,274(6):C1485
The Kv1.3 subunit confers a voltage-dependent, partialinactivation (time constant = 5.76 ± 0.14 ms at +50 mV), anenhanced slow inactivation, a hyperpolarizing shift in the activationmidpoint, and an increase in the deactivation time constant of theKv1.5 delayed rectifier. Removal of the first 10 amino acids fromKv1.3 eliminated the effects on fast and slow inactivation but notthe voltage shift in activation. Addition of the first 87 amino acids of Kv1.3 to the amino terminus of Kv1.5 reconstituted fast and slowinactivation without altering the midpoint of activation. Although aninternal pore mutation that alters quinidine block (V512A) did notaffect Kv1.3-mediated inactivation, a mutation of the external mouthof the pore (R485Y) increased the extent of fast inactivation whilepreventing the enhancement of slow inactivation. These data suggestthat 1) Kv1.3-mediated effects involve at least two distinct domains of this -subunit,2) inactivation involves openchannel block that is allosterically linked to the external pore, and3) the Kv1.3-induced shift in theactivation midpoint is functionally distinct from inactivation. 相似文献
5.
H Dobrzynski S M Rothery D D Marples S R Coppen Y Takagishi H Honjo M M Tamkun Z Henderson I Kodama N J Severs M R Boyett 《The journal of histochemistry and cytochemistry》2000,48(6):769-780
The aim of this study was to establish, using immunolabeling, whether the Kv1.5 K(+) channel is present in the pacemaker of the heart, the sinoatrial (SA) node. In the atrial muscle surrounding the SA node and in the SA node itself (from guinea pig and ferret), Western blotting analysis showed a major band of the expected molecular weight, approximately 64 kD. Confocal microscopy and immunofluorescence labeling showed Kv1.5 labeling clustered in atrial muscle but punctate in the SA node. In atrial muscle, Kv1.5 labeling was closely associated with labeling of Cx43 (gap junction protein) and DPI/II (desmosomal protein), whereas in SA node Kv1.5 labeling was closely associated with labeling of DPI/II but not labeling of Cx43 (absent in the SA node) or Cx45 (another gap junction protein present in the SA node). Electron microscopy and immunogold labeling showed that the Kv1.5 labeling in atrial muscle is preferentially associated with desmosomes rather than gap junctions. 相似文献
6.
Moroni A Viscomi C Sangiorgio V Pagliuca C Meckel T Horvath F Gazzarrini S Valbuzzi P Van Etten JL DiFrancesco D Thiel G 《FEBS letters》2002,530(1-3):65-69
Kcv (K+ Chlorella virus) is a miniature virus-encoded K+ channel. Its predicted membrane–pore–membrane structure lacks a cytoplasmic C-terminus and it has a short 12 amino acid (aa) cytoplasmic N-terminus. Kcv forms a functional channel when expressed in human HEK 293 cells. Deletion of the 14 N-terminal aa results in no apparent differences in the subcellular location and expression level of the Kcv protein. However, the truncated protein does not induce a measurable current in transfected HEK 293 cells or Xenopus oocytes. We conclude that the N-terminus controls functional properties of the Kcv channel, but does not influence protein expression. 相似文献
7.
McCormack K Connor JX Zhou L Ho LL Ganetzky B Chiu SY Messing A 《The Journal of biological chemistry》2002,277(15):13219-13228
Kvbeta2 binds to K(+) channel alpha subunits from at least two different families (Kv1 and Kv4) and is a member of the aldo-ketoreductase (AKR) superfamily. Proposed functions for this protein in vivo include a chaperone-like role in Kv1 alpha subunit biogenesis and catalytic activity as an AKR oxidoreductase. To investigate the in vivo function of Kvbeta2, Kvbeta2-null and point mutant (Y90F) mice were generated through gene targeting in embryonic stem cells. In Kvbeta2-null mice, Kv1.1 and Kv1.2 localize normally in cerebellar basket cell terminals and the juxtaparanodal region of myelinated nerves. Moreover, normal glycosylation patterns are observed for Kv1.1 and Kv1.2 in whole brain lysates. Thus, loss of the chaperone-like activity does not appear to account for the phenotype of Kvbeta2-null mice, which include reduced life spans, occasional seizures, and cold swim-induced tremors similar to that observed in Kv1.1-null mice. Mice expressing Kvbeta2, mutated at a site (Y90F) that abolishes AKR-like catalytic activity in other family members, have no overt phenotype. We conclude that Kvbeta2 contributes to regulation of excitability in vivo, although not directly through either chaperone-like or typical AKR catalytic activity. Rather, Kvbeta2 relies upon as yet unidentified mechanisms in the regulation of K(+) channel and/or oxidoreductive functions. 相似文献
8.
Decher N Gonzalez T Streit AK Sachse FB Renigunta V Soom M Heinemann SH Daut J Sanguinetti MC 《The EMBO journal》2008,27(23):3164-3174
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel. 相似文献
9.
Na(+) conductance through cloned K(+) channels has previously allowed characterization of inactivation and K(+) binding within the pore, and here we have used Na(+) permeation to study recovery from C-type inactivation in human Kv1.5 channels. Replacing K(+) in the solutions with Na(+) allows complete Kv1.5 inactivation and alters the recovery. The inactivated state is nonconducting for K(+) but has a Na(+) conductance of 13% of the open state. During recovery, inactivated channels progress to a higher Na(+) conductance state (R) in a voltage-dependent manner before deactivating to closed-inactivated states. Channels finally recover from inactivation in the closed configuration. In the R state channels can be reactivated and exhibit supernormal Na(+) currents with a slow biexponential inactivation. Results suggest two pathways for entry to the inactivated state and a pore conformation, perhaps with a higher Na(+) affinity than the open state. The rate of recovery from inactivation is modulated by Na(+)(o) such that 135 mM Na(+)(o) promotes the recovery to normal closed, rather than closed-inactivated states. A kinetic model of recovery that assumes a highly Na(+)-permeable state and deactivation to closed-inactivated and normal closed states at negative voltages can account for the results. Thus these data offer insight into how Kv1. 5 channels recover their resting conformation after inactivation and how ionic conditions can modify recovery rates and pathways. 相似文献
10.
J Papassotiriou R K?hler J Prenen H Krause M Akbar J Eggermont M Paul A Distler B Nilius J Hoyer 《FASEB journal》2000,14(7):885-894
Hyperpolarizing large-conductance, Ca(2+)-activated K(+) channels (BK) are important modulators of vascular smooth muscle and endothelial cell function. In vascular smooth muscle cells, BK are composed of pore-forming alpha subunits and modulatory beta subunits. However, expression, composition, and function of BK subunits in endothelium have not been studied so far. In patch-clamp experiments we identified BK (283 pS) in intact endothelium of porcine aortic tissue slices. The BK opener DHS-I (0.05-0.3 micromol/l), stimulating BK activity only in the presence of beta subunits, had no effect on BK in endothelium whereas the alpha subunit selective BK opener NS1619 (20 micromol/l) markedly increased channel activity. Correspondingly, mRNA expression of the beta subunit was undetectable in endothelium, whereas alpha subunit expression was demonstrated. To investigate the functional role of beta subunits, we transfected the beta subunit into a human endothelial cell line (EA.hy 926). beta subunit expression resulted in an increased Ca(2+) sensitivity of BK activity: the potential of half-maximal activation (V(1/2)) shifted from 73.4 mV to 49.6 mV at 1 micromol/l [Ca(2+)](i) and an decrease of the EC(50) value for [Ca(2+)](i) by 1 microM at +60 mV was observed. This study demonstrates that BK channels in endothelium are composed of alpha subunits without association to beta subunits. The lack of the beta subunit indicates a substantially different channel regulation in endothelial cells compared to vascular smooth muscle cells. 相似文献
11.
Hypoxia in solid tumors contributes to decreased immunosurveillance via down-regulation of Kv1.3 channels in T lymphocytes and associated T cell function inhibition. However, the mechanisms responsible for Kv1.3 down-regulation are not understood. We hypothesized that chronic hypoxia reduces Kv1.3 surface expression via alterations in membrane trafficking. Chronic hypoxia decreased Kv1.3 surface expression and current density in Jurkat T cells. Inhibition of either protein synthesis or degradation and endocytosis did not prevent this effect. Instead, blockade of clathrin-coated vesicle formation and forward trafficking prevented the Kv1.3 surface expression decrease in hypoxia. Confocal microscopy revealed an increased retention of Kv1.3 in the trans-Golgi during hypoxia. Expression of adaptor protein-1 (AP1), responsible for clathrin-coated vesicle formation at the trans-Golgi, was selectively down-regulated by hypoxia. Furthermore, AP1 down-regulation increased Kv1.3 retention in the trans-Golgi and reduced Kv1.3 currents. Our results indicate that hypoxia disrupts AP1/clathrin-mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane thus contributing to decreased Kv1.3 surface expression in T lymphocytes. 相似文献
12.
Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis 总被引:1,自引:0,他引:1
Hoang MH Nguyen XC Lee K Kwon YS Pham HT Park HC Yun DJ Lim CO Chung WS 《Biochemical and biophysical research communications》2012,422(1):181-186
Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance. 相似文献
13.
Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP)) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP) ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP) channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP) channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP) system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients. 相似文献
14.
Mathur R Choi WS Eldstrom J Wang Z Kim J Steele DF Fedida D 《Biochemical and biophysical research communications》2006,342(1):1-8
We have previously reported that SAP97 enhancement of hKv1.5 currents requires an intact Kv1.5 N-terminus and is independent of the PDZ-binding motif at the C-terminus of the channel [J. Eldstrom, W.S. Choi, D.F. Steele, D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett. 547 (2003) 205-211]. Here, we report that an interaction between the two proteins can be detected under certain conditions but their interaction is irrelevant to the enhancement of channel expression. Instead, a threonine residue at position 15 in the hKv1.5 N-terminus is critically important. Mutation of this residue, which lies within a consensus site for phosphorylation by protein kinase C, to an alanine, completely abrogated the effect of SAP97 on channel expression. Although we were unable to detect phosphorylation of this residue, specific inhibition of kinase C by Calphostin C eliminated the increase in wild-type hKv1.5 currents associated with SAP97 overexpression suggesting a role for this kinase in the response. 相似文献
15.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes. 相似文献
16.
GR Dahal J Rawson B Gassaway B Kwok Y Tong LJ Ptácek E Bates 《Development (Cambridge, England)》2012,139(19):3653-3664
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse. 相似文献
17.
18.
Vicente R Escalada A Villalonga N Texidó L Roura-Ferrer M Martín-Satué M López-Iglesias C Soler C Solsona C Tamkun MM Felipe A 《The Journal of biological chemistry》2006,281(49):37675-37685
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses. 相似文献
19.
Lu M Vergara S Zhang L Holliday LS Aris J Gluck SL 《The Journal of biological chemistry》2002,277(41):38409-38415
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase. 相似文献
20.
Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. 总被引:50,自引:30,他引:50 下载免费PDF全文
Eukaryotic cell cycle progression requires the periodic activation and inactivation of a protein-serine/threonine kinase which in fission yeast is encoded by the cdc2+ gene. The activity of this gene product, p34cdc2, is controlled by numerous interactions with other proteins and by its phosphorylation state. In fission yeast, p34cdc2 is phosphorylated on two sites, one of which has been identified as Tyr15. Dephosphorylation of Tyr15 regulates the initiation of mitosis. To understand more completely the regulation of p34cdc2 kinase activity, we have identified the second site of phosphorylation as Thr167, a residue conserved amongst all p34cdc2 homologues. By analysing the phenotypes of cells expressing various position 167 mutations and performing in vitro experiments, we establish that Thr167 phosphorylation is required for p34cdc2 kinase activity at mitosis and is involved in the association of p34cdc2 with cyclin B. Dephosphorylation of Thr167 might also play a role in the exit from mitosis. 相似文献