首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Havert MB  Ji L  Loeb DD 《Journal of virology》2002,76(6):2763-2769
The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5'r and 3'r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5' end, the middle, and the 3' end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3' of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism.  相似文献   

3.
4.
D D Loeb  K J Gulya    R Tian 《Journal of virology》1997,71(1):152-160
The template for hepadnavirus plus-strand DNA synthesis is a terminally redundant minus-strand DNA. An intramolecular template switch during plus-strand DNA synthesis, which permits plus-strand DNA elongation, has been proposed to be facilitated by this terminal redundancy, which is 7 to 9 nucleotides long. The aim of this study was to determine whether the presence of identical copies of the redundancy on the minus-strand DNA template was necessary and/or sufficient for the template switch and at what position(s) within the redundancy the switch occurs for duck hepatitis B virus. When dinucleotide insertions were placed within the copy of the redundancy at the 3' end of the minus-strand DNA template, novel sequences were copied into plus-strand DNA. The generation of these novel sequences could be explained by complete copying of the redundancy at the 5' end of the minus-strand DNA template followed by a template switch and then extension from a mismatched 3' terminus. In a second set of experiments, it was found that when one copy of the redundancy had either three or five nucleotides replaced the template switch was inhibited. When the identical, albeit mutant, sequences were restored in both copies of the redundancy, template switching was not necessarily restored. Our results indicate that the terminal redundancy on the minus-strand DNA template is necessary but not sufficient for template switching.  相似文献   

5.
6.
7.
Habig JW  Loeb DD 《Journal of virology》2003,77(23):12412-12420
Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3' end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. Circularization involves transfer of the nascent 3' end of the plus strand from the 5' end of the minus-strand DNA to the 3' end, where further elongation can lead to production of RC DNA. In duck hepatitis B virus (DHBV), a small terminal redundancy (5'r and 3'r) on the ends of the minus-strand DNA has been shown to be important, but not sufficient, for circularization. We investigated what contribution, if any, the base composition of the terminal redundancy made to the circularization process. Using a genetic approach, we found a strong positive correlation between the fraction of A and T residues within the terminal redundancy and the efficiency of the circularization process in those variants. Additionally, we found that the level of in situ priming increases, at the expense of primer translocation, as the fraction of A and T residues in the 3'r decreases. Thus, a terminal redundancy rich in A and T residues is important for both plus-strand template switches in DHBV.  相似文献   

8.
9.
10.
For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.  相似文献   

11.
12.
A family of poly(U) polymerases   总被引:5,自引:2,他引:3       下载免费PDF全文
The GLD-2 family of poly(A) polymerases add successive AMP monomers to the 3' end of specific RNAs, forming a poly(A) tail. Here, we identify a new group of GLD-2-related nucleotidyl transferases from Arabidopsis, Schizosaccharomyces pombe, Caenorhabditis elegans, and humans. Like GLD-2, these enzymes are template independent and add nucleotides to the 3' end of an RNA substrate. However, these new enzymes, which we refer to as poly(U) polymerases, add poly(U) rather than poly(A) to their RNA substrates.  相似文献   

13.
14.
15.
Habig JW  Loeb DD 《Journal of virology》2003,77(23):12401-12411
Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3' end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. A small DNA hairpin has been shown to form near the 3' end of the minus-strand DNA overlapping the direct repeat 1 in avihepadnaviruses. Previously we showed that this hairpin is involved in discriminating between two mutually exclusive pathways for the initiation of plus-strand DNA synthesis. In its absence, the pathway leading to production of duplex linear DNA is favored, whereas primer translocation is favored in its presence, apparently through the inhibition of in situ priming. Circularization involves transfer of the nascent plus strand from the 5' end of the minus-strand DNA to the 3' end, where further elongation can lead to production of RC DNA. Using both genetic and biochemical approaches, we now have found that the small DNA hairpin in the duck hepatitis B virus (DHBV) makes a positive contribution to circularization. The contribution appears to be through its impact on the conformation of the acceptor site. We also identified a unique DHBV variant that can synthesize RC DNA well in the absence of the hairpin. The behavior of this variant could serve as a model for understanding the mammalian hepadnaviruses, in which an analogous hairpin does not appear to exist.  相似文献   

16.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

17.
18.
In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polymerase template recognition, we found that initiation from the 3' end of a template requires one nucleotide 3' of the initiation nucleotide. The addition of a nontemplated nucleotide at the 3' end of minus-strand BMV RNAs led to initiation of genomic plus-strand RNA in vitro. Genomic plus-strand initiation was specific since cucumber mosaic virus minus-strand RNA templates were unable to direct efficient synthesis under the same conditions. In addition, mutational analysis of the minus-strand template revealed that the -1 nontemplated nucleotide, along with the +1 cytidylate and +2 adenylate, is important for RNA-dependent RNA polymerase interaction. Furthermore, genomic plus-strand RNA synthesis is affected by sequences 5' of the initiation site.  相似文献   

19.
A 3'-terminal, 77-nucleotide sequence of Bamboo mosaic virus (BaMV) minus-strand RNA (Ba-77), comprising a 5' stem-loop, a spacer and a 3'-CUUUU sequence, can be used to initiate plus-strand RNA synthesis in vitro . To understand the mechanism of plus-strand RNA synthesis, mutations were introduced in the 5' untranslated region of BaMV RNA, resulting in changes at the 3' end of minus-strand RNA. The results showed that at least three uridylate residues in 3'-CUUUU are required and the changes at the penultimate U are deleterious to viral accumulation in Nicotiana benthamiana protoplasts. Results from UV-crosslinking and in vitro RNA-dependent RNA polymerase competition assays suggested that the replicase preferentially interacts with the stem structure of Ba-77. Finally, CMV/83 + UUUUC, a heterologus RNA, which possesses about 80 nucleotides containing the 3'-CUUUU pentamer terminus, and which folds into a secondary structure similar to that of Ba-77, could be used as template for RNA production by the BaMV replicase complex in vitro .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号