首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Alloxan has been widely used to produce experimental diabetes mellitus syndrome. This compound causes necrosis of pancreatic beta-cells and, as is well known, induces oxidant free radicals which play a relevant role in the etiology and pathogenesis of both experimental and human diabetes mellitus. Previously we have reported hypoglycemic and antilipoperoxidative actions of silymarin in serum and pancreatic tissue respectively. The aim of this study was to test whether silymarin could reduce the hyperglycemia and revert the pancreatic damage in alloxan treated rats, tested with silymarin in two protocols: using both compounds simultaneously for four or eight doses, or using the compound 20 days after alloxan administration for 9 weeks. Serum glucose and insulin were determined, and pancreatic fragments were used for histology and insulin immunohistochemistry. Pancreatic islets were isolated to assess insulin and Pdx1 mRNA expression by RT-PCR. Our results showed that 72 hours after alloxan administration, serum glucose increased and serum insulin decreased significantly, whereas pancreatic tissue presented morphological abnormalities such as islet shrinkage, necrotic areas, loss of cell organization, widespread lipoid deposits throughout the exocrine tissue, and loss of beta cells, but insulin and glucagon immunoreactivity was scattered if any. In contrast the pancreatic tissue and both insulin and glucose serum levels of rats treated with silymarin were similar to those of control animals. In addition, insulin and glucagon immunoreactive cells patterns in Langerhans islets were also normal, and normal insulin and Pdx1 mRNA expression patterns were detected during pancreatic recovery in Langerhans islets. The overall results suggest that silymarin induces pancreatic function recovery demonstrated by insulin and glucagon expression protein and normoglycemia after alloxan pancreatic damage in rats.  相似文献   

2.
Alloxan is a diabetogenic drug and is known to induce diabetes through generation of free radicals. The toxic oxygen species can be detoxified by antioxidant enzyme system and thus reduce the deleterious effect of lipid peroxidation. Erythrocytes exposed to alloxan induced lipid peroxidationin vivo as well asin vitro. Although alloxan treatment produced a deleterious effect on antioxidant enzymes, pretreatment with glutathione and selenium led to a recovery of the activities of superoxide dismutase and glutathione peroxidase. However, catalase activity increased on alloxan treatment. Alloxan reduced blood glucose level significantly within 60 min but thereafter a slow and steady rise was observed.  相似文献   

3.
Zhang HN  He JH  Yuan L  Lin ZB 《Life sciences》2003,73(18):2307-2319
This study was undertaken to investigate the protective effect against alloxan-induced pancreatic islets damage by Ganoderma lucidum Polysaccharides (Gl-PS) isolated from the fruiting body of Ganoderma lucidum (Leyss. ex Fr.) Karst. In vitro, alloxan caused dose-dependent toxicity on the isolated pancreatic islets. Pre-treatment of islets with Gl-PS for 12 h and 24 h significantly reversed alloxan-induced islets viability loss. Gl-PS was also found to inhibit the free radicals production induced by alloxan in the isolated pancreatic islets using confocal microscopy. Gl-PS dose-dependently increased serum insulin and reduced serum glucose levels when pretreated intragastrically for 10 days in alloxan-induced diabetic mice. It was found that the pancreas homogenates had higher lipid peroxidation products in alloxan-treated mice than in the Gl-PS-treated animals. Aldehyde fuchsin staining revealed that alloxan caused nearly all the beta cells disappearing from the pancreatic islets, while Gl-PS partly protected the beta cells from necrosis. Alloxan (60 mg/kg) induced NF-kappa B activation in the pancreas at 30 min after injection, pretreatment with Gl-PS inhibited alloxan-induced activation of NF-kappa B. These results suggest that Gl-PS was useful in protecting against alloxan-induced pancreatic islets damage in vitro and in vivo; one of the mechanisms is through its scavenging ability to protect the pancreatic islets from free radicals-damage induced by alloxan.  相似文献   

4.
Alloxan can generate diabetes in experimental animals and its action can be associated with the production of free radicals. It is therefore important to check how different substances often referred to as free radical scavengers may interact with alloxan, especially that some of these substance may show both pro- and antioxidant activities. Using the alkaline comet assay we showed that alloxan at concentrations 0.01-50 microM induced DNA damage in normal human lymphocytes in a dose-dependent manner. Treated cells were able to recover within a 120-min incubation. Vitamins C and E at 10 and 50 microM diminished the extent of DNA damage induced by 50 microM alloxan. Pre-treatment of the lymphocytes with a nitrone spin trap, alpha-(4-pyridil-1-oxide)- N-t-butylnitrone (POBN) or ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), which mimics glutathione peroxides, reduced the alloxan-evoked DNA damage. The cells exposed to alloxan and treated with formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results confirmed that free radicals are involved in the formation of DNA lesions induced by alloxan. The results also suggest that alloxan can generate oxidized DNA bases with a preference for purines and contribute to their alkylation.  相似文献   

5.
The effect of oral administration of different doses of hydroalcoholic extract of silymarin on body weight, glucose concentration and indicators of oxidative stress superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and malondialdehyde (MDA) was investigated in the present study. Fifty adult male Wistar rats were used. The animals were divided into five groups and oral route of administration was used in control group (0.9 %, NaCl), control group patients (0.9 %, NaCl), diabetic group (100 mg/kg, silymarin), diabetic group (125 mg/kg, silymarin), diabetic group (250 mg/kg, silymarin) for 14 days with gavage. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.). Before and 3 days after injection, and at 7 and 14 days of treatment, the fasting glucose level and weight were measured. At the end of 14 days, animals were anesthetized with ether and blood samples were taken by heart puncture and were analyzed for oxidative stress indicators. The results showed that hydroalcoholic extract of silymarin can increase the average body weight and decrease glucose and, at the end of 14 days, decrease MDA level and increase the level of antioxidant enzymes (SOD, GPX, CAT) in red blood cells in a dose-dependent manner (P < 0.05). In conclusion, the hydroalcoholic extract of silymarin has an overall beneficial effect on body weight, glucose level and oxidative stress. Therefore, silymarin may reduce oxidative stress via increasing antioxidant enzyme activity.  相似文献   

6.
We have investigated the effect of alloxan on insulin secretion and glucose homeostasis in rats maintained on a 17% protein (normal protein, NP) or 6% protein (low protein, LP) diet from weaning (21 days old) to adulthood (90 days old). The incidence of alloxan diabetes was higher in the NP (3.5 times) than in the LP group. During an oral glucose tolerance test, the area under serum glucose curve was lower in LP (57%) than in NP rats while there were no differences between the two groups in the area under serum insulin curve. The serum glucose disappearance rate (Kitt) after exogenous insulin administration was higher in LP (50%) than in NP rats. In pancreatic islets isolated from rats not injected with alloxan, acute exposure to alloxan (0.05 mmol/L) reduced the glucose- or arginine-stimulated insulin secretion of NP islets by 78% and 56%, respectively, whereas for islets from LP rats, the reduction was 47% and 17% in the presence of glucose and arginine, respectively. Alloxan treatment reduced the glucose oxidation in islets from LP rats to a lesser extent than in NP islets (23% vs. 56%). In conclusion, alloxan was less effective in producing hyperglycemia in rats fed a low protein diet than in normal diet rats. This effect is attributable to an increased peripheral sensivity to insulin in addition to a better preservation of glucose oxidation and insulin secretion in islets from rats fed a low protein diet.  相似文献   

7.
Xanthine dehydrogenase activity was determined in blood serum of rats in which diabetes had been induced by alloxan administration. The results show that there is no statistical significance in the difference found for normal and diabetic rats. Alloxan produced an inhibition in the enzyme activity in animals in which a carbon tetrachloride hepatotoxicity had been induced.  相似文献   

8.
Effect of methanolic extract of fruits of P. longum (PLM) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in adriamycin (ADR) induced cardiotoxicity in Wistar rats was investigated. PLM was administered to Wistar albino rats in two different doses, by gastric gavage (250 mg/kg and 500 mg/kg) for 21 days followed by ip ADR (15 mg/kg) on 21st day. ADR administration showed significant decrease in the activities of marker enzymes aspartate transaminase, alanine transaminase, lactate dehydrogenase and creatine kinase in heart with a concomitant increase in their activities in serum. A significant increase in lipid peroxide levels in heart of ADR treated rats was also observed. Pretreatment with PLM ameliorated the effect of ADR on lipid peroxide formation and restored activities of marker enzymes. Activities of myocardial antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase along with reduced glutathione were significantly lowered due to cardiotoxicity in rats administered with ADR. PLM pretreatment augmented these endogenous antioxidants. Histopathological studies of heart revealed degenerative changes and cellular infiltrations in rats administered with ADR and pretreatment with PLM reduced the intensity of such lesions. The results indicate that PLM administration offers significant protection against ADR induced oxidative stress and reduces the cardiotoxicity by virtue of its antioxidant activity.  相似文献   

9.
Oxidative stress in diabetic tissues is accompanied by high-level of free radicals with simultaneously declined antioxidant enzymes status leading to cell membrane damage. The present study was carried out to observe the effect of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP) administration on blood glucose and insulin levels, antioxidant enzymes, lipid peroxidation, pyruvate kinase, lactate dehydrogenase and protein kinase C in heart, muscle and brain of the alloxan-induced diabetic rats to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15?mg/100?g body weight), and rats were treated with 2?IU insulin, 0.6?mg/ml SOV, 5% TSP in the diet and a combination of 0.2?mg/ml SOV and 5% TSP separately for 21?days. Blood glucose levels increased markedly in diabetic rats, animals treated with a combined dose of SOV and TSP had glucose levels almost comparable with controls, similar results were obtained in the activities of pyruvate kinase, lactate dehydrogenase, antioxidant enzymes and protein kinase C in diabetic animals. Our results showed that lower doses of SOV (0.2?mg/ml) could be used in combination with TSP to effectively reverse diabetic alterations in experimental diabetes. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Diabetes mellitus is a syndrome characterized by the loss of glucose homeostasis due to several reasons. In spite of the presence of known anti-diabetic medicines in the pharmaceutical market, remedies from natural resources are used with success to treat this disease. The present study was undertaken to investigate the effect of coconut kernel protein (CKP) on alloxan induced diabetes in Sprague-Dawley rats. Diabetes was induced by injecting a single dose of alloxan (150mg/kg body weight) intraperitoneally. After inducing diabetes, purified CKP isolated from dried coconut kernel was administered to rats along with a semi synthetic diet for 45 days. After the experimental period, serum glucose, insulin, activities of different key enzymes involved in glucose metabolism, liver glycogen levels and the histopathology of the pancreas were evaluated. The amount of individual amino acids of CKP was also determined using HPLC. Results showed that CKP has significant amount of arginine. CKP feeding attenuated the increase in the glucose and insulin levels in diabetic rats. Glycogen levels in the liver and the activities of carbohydrate metabolizing enzymes in the serum of treated diabetic rats were reverted back to the normal levels compared to that of control. Histopathology revealed that CKP feeding reduced the diabetes related pancreatic damage in treated rats compared to the control. These results clearly demonstrated the potent anti-diabetic activity of CKP which may be probably due to its effect on pancreatic β cell regeneration through arginine.  相似文献   

11.
Type 1 diabetes mellitus (T1DM) is characterized by an impairment of the insulin-secreting beta cells with an immunologic base. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and free radicals are believed to play key roles in destruction of pancreatic β cells. The present study was designed to investigate the effect of Silybum marianum seed extract (silymarin), a combination of several flavonolignans with immunomodulatory, anti-oxidant, and anti-inflammatory potential on streptozotocin (STZ)-induced T1DM in mouse. Experimental T1DM was induced in male albino mice by IV injection of multiplelow- doses of STZ for 5 days. Seventy-two male mice in separate groups received various doses of silymarin (20, 40, and 80 mg/kg) concomitant or after induction of diabetes for 21 days. Blood glucose and pancreatic biomarkers of inflammation and toxic stress (IL-1β, TNF-α, myeloperoxidase, lipid peroxidation, protein oxidation, thiol molecules, and total antioxidant capacity) were determined. Silymarin treatment reduced levels of inflammatory cytokines such as TNF-α and IL-1β and oxidative stress mediators like myeloperoxidase activity, lipid peroxidation, carbonyl and thiol content of pancreatic tissue in an almost dose dependent manner. No marked difference between the prevention of T1DM and the reversion of this disease by silymarin was found. Use of silymarin seems to be helpful in T1DM when used as pretreatment or treatment. Benefit of silymarin in human T1DM remains to be elucidated by clinical trials.  相似文献   

12.
The activity of in vitro glutathione S-transferase towards 1-chloro-2,4-dinitrobenzene was examined in liver, renal cortex, and small intestine (duodenum, jejunum, ileum) after the in vivo treatment of male Wistar rats with streptozotocin or alloxan. The studies were performed at 2, 10, 24, and 48 h and 7 and 15 days after streptozotocin treatment or 24 and 48 h after alloxan treatment. The results indicated that while the blood levels of insulin-glucose did not show variations, there were no alterations of the glutathione S-transferase activity in the tissues tested. On the other hand, when the treatments caused modifications on blood insulin-glucose levels, there were changes of glutathione S-transferase activity in all tissues (except in the ileum) in such a way that a direct relationship between plasma insulin levels and glutathione S-transferase activity could be demonstrated. These results were also confirmed through insulin administration to control and diabetic rats. The data demonstrate a possible regulation of glutathione S-transferase activity by blood insulin and (or) glucose levels in the tissues tested.  相似文献   

13.
The effect of alloxan on glucokinase in isolated rat hepatocytes was studied. Exposure of hepatocytes to alloxan (3 mM) at 30 degrees C for 5 min produced a marked inhibition (77%) of glucokinase activity and altered slightly the phosphofructokinase activity (32% inhibition). Pyruvate kinase and glucose 6-phosphate dehydrogenase, however, were not inhibited at all. Alloxan induced a concentration-dependent inhibition of glucokinase activity with a detectable inhibition at an alloxan concentration of 1 mM. The inhibition of glucokinase activity by alloxan was protected by the simultaneous presence of 15 mM hexose such as D-glucose, 3-O-methylglucose, or D-mannose. D-Galactose showed no protective effect. These results suggest that alloxan may exert its cytotoxic action through the inhibition of glucokinase activity not only in the liver but also in the pancreatic islets, since liver and islet glucokinases are known to be quite similar in various properties.  相似文献   

14.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound.  相似文献   

15.
The current study was aimed to investigate pancreatic protective and anti-diabetic activities of the aqueous extract of Derris reticulata stem. First, we evaluated a cytoprotective potential of D. reticulata extract on alloxan-induced damage in vitro. Treatment with D. reticulata extract at the doses of 250 and 500 μg/ml significantly increased cell viability of the pancreatic β-cell line RINm5F after exposure of alloxan. The anti-hyperglycemic activity of D. reticulata extract was further studied in alloxan-induced diabetic rats. A significant reduction in blood glucose level along with an increase in body weight was observed in diabetic rats treated with D. reticulata extract at 250 mg/kg body weight for 15 days. Serum aspartate transaminase and alanine transaminase levels were also significantly decreased compared to diabetic control rats. In accordance with in vitro cytoprotective effect, histopathological examination revealed that pancreatic islet cells of the extract-treated diabetic rat were less damage than those of the untreated diabetic group. In order to find another possible mechanism of action underling hypoglycemic activity, the effect on glucose absorption was examined using everted sac jejunum. The results showed that D. reticulata extract suppressed glucose absorption from small intestine. To corroborate safety use of D. reticulata extract, acute oral toxicity was also conducted in rats. Our results showed that none of the tested doses (250, 500, 1,000, and 2,000 mg/kg) induced signs of toxicity or mortality after administration of the extract. The results suggested that D. reticulata extract possess anti-diabetic activity, which resulting from its pancreatic cytoprotective effect and inhibition of intestinal glucose absorption.  相似文献   

16.
1. Short term (1-2 hr) and long-term (2 days) effects of experimental alloxan induced diabetes on the kinetics of the renal hexose monophosphate shunt dehydrogenases are reported. 2. Alloxan diabetes for 2 days significantly increased kidney weight (16%) adding about 80 mg/day per g of kidney. No significant changes were found in renal growth 1-2 hr after alloxan injection. 3. Under these experimental conditions, the activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase significantly increased (103 and 33% respectively) at all substrate concentrations, without affecting the KmS of either enzyme. 4. There was no effect of alloxan on the activity of these enzymes at 1-2 hr. Saturation curves show that all enzymes exhibited a M-M kinetic without evidence of sigmoidicity. 5. The results suggest that increased renal hexose monophosphate dehydrogenases activities are due to increased concentrations of the rate limiting proteins. 6. The relationship between these changes and renal hypertrophy is also discussed.  相似文献   

17.
The herbal formulation, DRF/AY/5001, elicits hypoglycemic/antidiabetic effects in both normal and experimentally induced hyperglycemic (epinephrine and alloxan) rats. Further, herbal formulation treatment can significantly alter the pattern of glucose tolerance in normal and diabetic rats. It is possible that the herbal formulation may act through both, pancreatic and extra-pancreatic mechanism(s). The DRF/AY/5001 also elicited a significant antioxidant effect in alloxan diabetic rats as reflected by its ability to inhibit lipid peroxidation and to elevate the enzymatic antioxidants in pancreatic tissue. The histopathological studies during the long-term treatment have shown to ameliorate the alloxan induced histological damage of islets of Langerhans. The inhibitory effects on biochemical and histological parameters induced by herbal formulation at a dose of 600 mg/kg were almost comparable to that of standard drug, glibenclamide (4 mg/kg). The present study demonstrates that herbal formulation exhibits promisisng antidiabetic activity and helps to maintain good glycemic and metabolic control.  相似文献   

18.
Antioxidants are one of the key players in tumorigenesis, several natural and synthetic antioxidants were shown to have anticancer effects. In the present investigation the efficacy of silymarin on the antioxidant status of N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis in Wistar albino male rats were assessed. The animals were divided into five groups. The animals in the groups 1 and 3 were normal control and silymarin control, respectively. Groups 2, 4 and 5 were administered with 0.01% NDEA in drinking water for 15 weeks to induce hepatocellular carcinoma (HCC). Starting 1 week prior to NDEA administration group 4 animals were treated with silymarin in diet for 16 weeks, 10 weeks after NDEA administration group 5 animals were treated with silymarin and continued till the end of the experiment period (16 weeks). After the experimental period the body weight, relative liver weight, number of nodules, size of nodules, the levels of lipid peroxidation, glutathione (GSH), and the activities of antioxidant enzymes were assessed in both haemolysate and liver tissue. In group 2 hepatocellular carcinoma induced animals there was an increase in the number of nodules, relative liver weight. The levels of lipid peroxides were elevated with subsequent decrease in the body weight, (glutathione) GSH, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD). In contrast, silymarin + NDEA treated groups 4 and 5 animals showed a significant decrease in the number of nodules with concomitant decrease in the lipid peroxidation status. The levels of GSH and the activities of antioxidant enzymes in both haemolysate and liver were improved when compared with hepatocellular carcinoma induced group 2 animals. The electron microscopy studies were also carried out which supports the chemopreventive action of the silymarin against NDEA administration during liver cancer progression. These findings suggest that silymarin suppresses NDEA induced hepatocarcinogenesis by modulating the antioxidant defense status of the animals.  相似文献   

19.
Polyenoylphosphatidylcholine (PPC: 100 or 300 mg kg?1 b.w., by gastric intubation for 30 days) produced a clearcut protection of the liver of rats treated with alloxan (150 mg kg?1 b.w., i.p.). The liver of rats treated with alloxan was characterized by hydropic dystrophy and lymphocytic infiltrations. Treatment with alloxan increased serum γ-GT and ALAT activities. The liver structure of rats treated with PPC did not differ from the liver of control animals. PPC normalized the biochemical abnormalities caused by the diabetes. The number of pancreatic islets and β/α; cell ratio decreased in the diabetic rats. A number of β-cells in this group did not contain granules. PPC prevented the decrease in the number of islets and the β/α; cell ratio in the pancreas of the diabetic rats. The intensity of staining of β-cell granules in the pancreas of PPC-treated rats had a position intermediate between the control and diabetic groups. Alloxan increased the blood glucose content where treatment with PPC decreased this. The results suggest that PPC acts as a cytoprotector in the liver and pancreas of rats with experimental diabetes induced by alloxan.  相似文献   

20.
The ethanolic extract of W. fruticosa flowers (250 and 500 mg/kg) significantly reduced fasting blood glucose level and increased insulin level after 21 days treatment in streptozotocin diabetic rats. The extract also increased catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase activities significantly and reduced lipid peroxidation. Glycolytic enzymes showed a significant increase in their levels while a significant decrease was observed in the levels of the gluconeogenic enzymes in ethanolic extract treated diabetic rats. The extract has a favourable effect on the histopathological changes of the pancreatic beta-cells in streptozotocin induced diabetic rats. The results suggest that W. fruticosa possess potential antihyperglycemic effect by regulating glucose homeostasis and antioxidant efficacy in streptozotocin-induced diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号