共查询到20条相似文献,搜索用时 15 毫秒
1.
Beak size and shape in Darwin's finches have traditionally been quantified using a few univariate measurements (length, depth, width). Here we show the improved inferential resolution of geometric morphometric methods, as applied to three hierarchical levels: (i) among seven species on Santa Cruz Island, (ii) among different sites on Santa Cruz for a single species (Geospiza fortis), and (iii) between large and small beak size morphs of G. fortis at one site (El Garrapatero). Our results support previous studies in finding an axis of shape variation (long/shallow/pointy vs. short/deep/blunt) that separates many of the species. We also detect additional differences among species in the relative sizes and positions of the upper and lower mandibles and in curvature of the mandibles. Small-scale, but potentially relevant, shape variation was also detected among G. fortis from different sites and between sympatric beak size morphs. These results suggest that adaptation to different resources might contribute to diversification on a single island. 相似文献
2.
3.
Joris Soons Anthony Herrel Annelies Genbrugge Peter Aerts Jeffrey Podos Dominique Adriaens Yoni de Witte Patric Jacobs Joris Dirckx 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1543):1093-1098
Darwin''s finches have radiated from a common ancestor into 14 descendent species, each specializing on distinct food resources and evolving divergent beak forms. Beak morphology in the ground finches (Geospiza) has been shown to evolve via natural selection in response to variation in food type, food availability and interspecific competition for food. From a mechanical perspective, however, beak size and shape are only indirectly related to birds'' abilities to crack seeds, and beak form is hypothesized to evolve mainly under selection for fracture avoidance. Here, we test the fracture-avoidance hypothesis using finite-element modelling. We find that across species, mechanical loading is similar and approaches reported values of bone strength, thus suggesting pervasive selection on fracture avoidance. Additionally, deep and wide beaks are better suited for dissipating stress than are more elongate beaks when scaled to common sizes and loadings. Our results illustrate that deep and wide beaks in ground finches enable reduction of areas with high stress and peak stress magnitudes, allowing birds to crack hard seeds while limiting the risk of beak failure. These results may explain strong selection on beak depth and width in natural populations of Darwin''s finches. 相似文献
4.
5.
6.
D. W. Snow 《Journal of Ornithology》1966,107(3-4):283-291
Summary The moult and annual cycle of Darwin's finches were studied at Academy Bay, Indefatigable Island, from February 1963 to June 1964. In 1963 the only heavy rainfall of the year fell on 23–24 February, and was immediately followed by nesting. The next breeding season began in December, following moderate rainfall in late November.It was found that in February 1963, before breeding began, a high proportion of the adult finches were undergoing a wing-moult. When breeding began, this moult was arrested, and it was resumed when breeding ended, in April. By August moult had finished. A smaller proportion of the adults began a wing-moult before the next breeding season began, and this moult was again arrested when breeding took place.The moult regime described is very different from that given in the literature for Darwin's finches, which are said to undergo a single post-breeding moult. Some possible reasons are suggested for the discrepancy.The moult of juveniles was followed in detail in 1963, when the young birds were all hatched in March or April. Body-moult took place in May and June, followed in July by moult of the innermost secondaries and the irregular replacement of other flightfeathers. Later, in the last three months of the year, another wing-moult began, after which the young females were indistinguishable from adults and some, at least, of the males were in partly black plumage.
Zusammenfassung Von Februar 1963 bis Juni 1964 wurden im Gebiet der Academy Bay der Indefatigable-Insel Mauser und Jahreszyklus von Darwinfinken studiert. Unmittelbar nach den einzigen ausgiebigen Regenfällen des Jahres 1963 am 23.–24. Februar begannen die Vögel zu nisten. Die nächste Brutperiode begann im Dezember, nachdem Ende November mäßige Regenfälle voraufgegangen waren.Ein großer Teil der adulten Darwinfinken befand sich im Februar 1963, bevor die Brutaktivität begann, in der Schwingenmauser. Mit dem Einsatz der Brutaktivität wurde diese Mauser unterbrochen und nach dem Ende der Fortpflanzungsperiode, im April, wieder fortgeführt. Etwa im August war die Mauser zu Ende. Ein kleinerer Teil der Altvögel begann die Schwingen zu mausern, bevor die nächste Brutperiode begonnen hatte, und auch in diesem Falle wurde die Mauser mit dem Einsetzen der Brutaktivität unterbrochen.Dieses Mauserverhalten unterscheidet sich sehr von den Literaturangaben über die Mauser der Darwinfinken, nach denen diese jährlich nur eine, und zwar eine postnuptiale Mauser durchmachen. Einige mögliche Erklärungen für die unterschiedlichen Angaben werden vorgebracht.Im Jahre 1963, als alle Jungvögel im März oder April schlüpften, wurde die Mauser der Jungvögel genauer untersucht. Das Kleingefieder wurde im Mai und Juni gemausert; im Juli wurden dann die innersten Armschwingen und in unregelmäßiger Folge auch andere Schwingen gemausert. In den letzten drei Monaten des Jahres begann dann eine neue Schwingenmauser, nach der die jungen von den alten nicht mehr zu unterscheiden waren, während wenigstens einige der nun teilweise schwarzes Gefieder besaßen.相似文献
7.
Kevin J. McGraw Kristen Lee Amir Lewin 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2011,197(6):683-691
Stress can have widespread effects on animal behaviors and phenotypes, including sexually selected traits. Ornamental colors have long been studied as honest signals of condition, but few studies have been conducted on how the physiological stress response (i.e., corticosterone (CORT) elevation) impacts color expression. We used a traditional capture-and-restraint technique to examine the effect of repeated handling stress on carotenoid-dependent beak coloration in male and female zebra finches (Taeniopygia guttata). Birds subjected to daily, 10-min handling treatments, which elevated circulating CORT levels, for a four-week period displayed deeper orange/red beak coloration than did control animals. Stressed males lost body mass during the experiment and marginally decreased in circulating carotenoid concentrations. Hence, handling stress may have reduced food intake or induced mobilization of body stores (i.e., fat) of carotenoids. In contrast to males, stressed females maintained orange beak color, while control females faded in color. This study highlights sex- and pigment-specific mechanisms by which stress may temporarily enhance the expression of sexual traits, but at the expense of other key fitness traits (e.g., body mass maintenance, reproduction). 相似文献
8.
Pedigrees, assortative mating and speciation in Darwin's finches 总被引:1,自引:0,他引:1
Pedigree analysis is a useful tool in the study of speciation. It can reveal trans-generational influences on the choice of mates. We examined mating patterns in a population of Darwin's medium ground finches (Geospiza fortis) on Daphne Major Island to improve our understanding of how a barrier to the exchange of genes between populations arises in evolution. Body sizes of mates were weakly correlated. In one year, the smallest females were paired non-randomly with the males of similar size, and in another year the largest males were paired with the largest females. An influence of parental morphology on the choice of mates, as expected from sexual imprinting theory, was found; the body size of mates was predicted by the body sizes of both parents, and especially strongly by the father's. These associations imply that the seeds of reproductive isolation between species are present within a single variable population. The implication was subject to a natural test: two exceptionally large birds of the study species, apparently immigrants, bred with each other, as did their offspring, and not with the members of the resident population. The intense inbreeding represents incipient speciation. It parallels a similar phenomenon when another species, the large ground finch, immigrated to Daphne and established a new population without interbreeding with the resident medium ground finches. 相似文献
9.
RachaelY.DUDANIEC GaryHALLAS SoniaKLEINDORFER 《动物学报》2005,51(3):507-512
达尔文雀是种群进化生态学研究的一个模式类群。然而,关于这些鸟类的寄生虫和疾病方面,我们所知甚少。本文对小地雀( Geospiza fuliginosa)的血液和消化道、中地雀( G. fortis)的消化道寄生虫进行了调查。根据对来自3个岛屿127成体血液样本、22个雏鸟血液和消化道样本的检测,我们没有从小地雀的血液里和中地雀的消化道里发现寄生虫。仅仅从1只来自Floreana岛的小地雀雏鸟的消化道里,发现一种寄生虫(Isosporaspp.) [动物学报51 (3) : 507 -512 , 2005]。 相似文献
10.
K. Petren B. R. Grant P. R. Grant 《Proceedings. Biological sciences / The Royal Society》1999,266(1417):321
Allele length variation at 16 microsatellite loci was used to estimate the phylogeny of 13 out of the 14 species of Darwin''s finches. The resulting topology was similar to previous phylogenies based on morphological and allozyme variation. An unexpected result was that genetic divergence among Galápagos Island populations of the warbler finch (Certhidea olivacea) predates the radiation of all other Darwin''s finches. This deep split is surprising in view of the relatively weak morphological differentiation among Certhidea populations and supports the hypothesis that the ancestor of all Darwin''s finches was phenotypically similar to Certhidea. The results also resolve a biogeographical problem: the Cocos Island finch evolved after the Galápagos finch radiation was under way, supporting the hypothesis that this distant island was colonized from the Galápagos Islands. Monophyletic relationships are supported for both major groups, the ground finches (Geospiza) and the tree finches (Camarhynchus and Cactospiza), although the vegetarian finch (Platyspiza crassirostris) appears to have diverged prior to the separation of ground and tree finches. These results demonstrate the use of microsatellites for reconstructing phylogenies of closely related species and interpreting their evolutionary and biogeographic histories. 相似文献
11.
Trevor Price 《Oecologia》1985,66(3):411-416
Summary I show how food shortage affects reproduction in a population of Darwin's Medium Ground Finches, Geospiza fortis. Despite the common occurrence of starvation and absence of nest predation, hatching is typically nighly synchronous and adaptive brood reductionappears to be absent. Variation in both growth rates and clutch size in association with the varying conditions is documented. This variation is interpreted as being a direct response to environmental conditions rather than adaptive phenotypic plasticity. I conclude that selection pressures to raise one or two chicks during times of food shortage, or to delay growth rates, are weak or absent. 相似文献
12.
Immunological investments reflect parasite abundance in island populations of Darwin's finches 总被引:1,自引:0,他引:1
Lindström KM Foufopoulos J Pärn H Wikelski M 《Proceedings. Biological sciences / The Royal Society》2004,271(1547):1513-1519
The evolution of parasite resistance can be influenced by the abundance of parasites in the environment. However, it is yet unresolved whether vertebrates change their investment in immune function in response to variation in parasite abundance. Here, we compare parasite abundance in four populations of small ground finches (Geospiza fuliginosa) in the Galapagos archipelago. We predicted that populations exposed to high parasite loads should invest more in immune defence, or alternatively use a different immunological defence strategy. We found that parasite prevalence and/or infection intensity increased with island size. As predicted, birds on large islands had increased concentrations of natural antibodies and mounted a strong specific antibody response faster than birds on smaller islands. By contrast, the magnitude of cell-mediated immune responses decreased with increasing parasite pressure, i.e. on larger islands. The data support the hypothesis that investments into the immune defence are influenced by parasite-mediated selection. Our results are consistent with the hypothesis that different immunological defence strategies are optimal in parasite-rich and parasite-poor environments. 相似文献
13.
Huber SK De León LF Hendry AP Bermingham E Podos J 《Proceedings. Biological sciences / The Royal Society》2007,274(1619):1709-1714
Recent research on speciation has identified a central role for ecological divergence, which can initiate speciation when (i) subsets of a species or population evolve to specialize on different ecological resources and (ii) the resulting phenotypic modes become reproductively isolated. Empirical evidence for these two processes working in conjunction, particularly during the early stages of divergence, has been limited. We recently described a population of the medium ground finch, Geospiza fortis, that features large and small beak morphs with relatively few intermediates. As in other Darwin's finches of the Galápagos Islands, these morphs presumably diverged in response to variation in local food availability and inter- or intraspecific competition. We here demonstrate that the two morphs show strong positive assortative pairing, a pattern that holds over three breeding seasons and during both dry and wet conditions. We also document restrictions on gene flow between the morphs, as revealed by genetic variation at 10 microsatellite loci. Our results provide strong support for the central role of ecology during the early stages of adaptive radiation. 相似文献
14.
I studied delayed plumage maturation, a common phenomenon inpasserine birds, in a species of Darwin's finch, Geospiza fortis,on Isla Daphne Major, Galapagos, Ecuador. To address the questionof why males advertise their youth and immaturity with subadultplumage, I determined the fitness consequences of possessingdifferent plumage states at different ages. Rate of entry intoadult plumage is both variable and heritable. In two cohorts,individuals that took longer to enter full adult plumage surviveddry conditions significantly better than those that acquiredadult plumage quickly. Behavioral observations helped revealthe reasons for this higher survival. Advantages arose fromthe avoidance of conflict that occurred by signaling subordinatestatus with subadult plumage in both the nonbreeding and breedingseasons. Although blacker males had a significantly lower survival,those black males that did survive had a reproductive advantagein their first breeding season over males with less black intheir plumage from the same cohort and raised significantlymore offspring to fledging. Thus the study demonstrates selectionon the length of the subadult plumage stage. [Behav Ecol 1990;l:161170] 相似文献
15.
16.
Studies of Darwin's finches of the Galapagos Islands have provided pivotal insights into the interplay of ecological variation, natural selection, and morphological evolution. Here we document, across nine Darwin's finch species, correlations between morphological variation and bite force capacity. We find that bite force correlates strongly with beak depth and width but only weakly or not at all with beak length, a result that is consistent with prior demonstrations of natural selection on finch beak morphology. We also find that bite force is predicted even more strongly by head width, which exceeds all beak dimensions in predictive strength. To explain this result we suggest that head width determines the maximum size, and thus maximum force generation capacity of finch jaw adductor muscles. We suggest that head width is functionally relevant and may be a previously unrecognized locus of natural selection in these birds, because of its close relationship to bite force capacity. 相似文献
17.
Luis Fernando de León Eldredge Bermingham Jeffrey Podos Andrew P. Hendry 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1543):1041-1052
Divergence and speciation can sometimes proceed in the face of, and even be enhanced by, ongoing gene flow. We here study divergence with gene flow in Darwin''s finches, focusing on the role of ecological/adaptive differences in maintaining/promoting divergence and reproductive isolation. To this end, we survey allelic variation at 10 microsatellite loci for 989 medium ground finches (Geospiza fortis) on Santa Cruz Island, Galápagos. We find only small genetic differences among G. fortis from different sites. We instead find noteworthy genetic differences associated with beak. Moreover, G. fortis at the site with the greatest divergence in beak size also showed the greatest divergence at neutral markers; i.e. the lowest gene flow. Finally, morphological and genetic differentiation between the G. fortis beak-size morphs was intermediate to that between G. fortis and its smaller (Geospiza fuliginosa) and larger (Geospiza magnirostris) congeners. We conclude that ecological differences associated with beak size (i.e. foraging) influence patterns of gene flow within G. fortis on a single island, providing additional support for ecological speciation in the face of gene flow. Patterns of genetic similarity within and between species also suggest that interspecific hybridization might contribute to the formation of beak-size morphs within G. fortis. 相似文献
18.
Island populations harbour a comparatively species-poor pathogen community, often resulting in naïve host species that experience compromised immunity when faced with novel diseases. Over 95% of the Galápagos avifauna have survived 400 years of human settlement, yet currently face threats due to introduced diseases such as avian poxvirus. On Hawaii, declining populations of birds and even some extinctions have been attributed to avian poxvirus, and hence, identifying the prevalence and fitness costs of avian poxvirus on the Galápagos is a conservation priority. Surveys of avian poxvirus in Darwin's finches on Santa Cruz Island between 2000 and 2004 found a 33% annual increase in the prevalence of pox lesions in ground finches. Comparisons of pox prevalence on three islands (Santa Cruz, Floreana, and Isabela) were made in 2004, which indicated significant variation in pox prevalence across islands (Isabela>Santa Cruz>Floreana). Darwin's finch species were found to be differentially affected by poxvirus, with a higher prevalence in ground finches than in tree finches. There was a significant effect of habitat, even within species, with higher prevalence in the lowlands than highlands. Pox prevalence was not correlated with sex or body condition. However, male small ground finches Geospiza fuliginosa with evidence of pox were less likely to have a mate (16.6% paired) compared with males without pox (77% paired), indicating fitness costs associated with poxvirus infection. 相似文献
19.
Sato A Tichy H Grant PR Grant BR Sato T O'hUigin C 《Molecular biology and evolution》2011,28(6):1943-1956
The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin's finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura, which we identified previously as the closest extant relative of DFs in continental America. 相似文献
20.
Multilocus genotypes from Charles Darwin's finches: biodiversity lost since the voyage of the Beagle
Kenneth Petren Peter R. Grant B. Rosemary Grant Andrew A. Clack Ninnia V. Lescano 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1543):1009-1018
Genetic analysis of museum specimens offers a direct window into a past that can predate the loss of extinct forms. We genotyped 18 Galápagos finches collected by Charles Darwin and companions during the voyage of the Beagle in 1835, and 22 specimens collected in 1901. Our goals were to determine if significant genetic diversity has been lost since the Beagle voyage and to determine the genetic source of specimens for which the collection locale was not recorded. Using ‘ancient’ DNA techniques, we quantified variation at 14 autosomal microsatellite loci. Assignment tests showed several museum specimens genetically matched recently field-sampled birds from their island of origin. Some were misclassified or were difficult to classify. Darwin''s exceptionally large ground finches (Geospiza magnirostris) from Floreana and San Cristóbal were genetically distinct from several other currently existing populations. Sharp-beaked ground finches (Geospiza difficilis) from Floreana and Isabela were also genetically distinct. These four populations are currently extinct, yet they were more genetically distinct from congeners than many other species of Darwin''s finches are from each other. We conclude that a significant amount of the finch biodiversity observed and collected by Darwin has been lost since the voyage of the Beagle. 相似文献