首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorting of membrane proteins into intralumenal endosomal vesicles, multivesicular body (MVB) sorting, is critical for receptor down regulation, antigen presentation and enveloped virus budding. Vps4 is an AAA ATPase that functions in MVB sorting. Although AAA ATPases are oligomeric, mechanisms that govern Vps4 oligomerization and activity remain elusive. Vps4 has an N-terminal microtubule interacting and trafficking domain required for endosome recruitment, an AAA domain containing the ATPase catalytic site and a beta domain, and a C-terminal alpha helix positioned close to the catalytic site in the 3D structure. Previous attempts to identify the role of the C-terminal helix have been unsuccessful. Here, we show that the C-terminal helix is important for Vps4 assembly and ATPase activity in vitro and function in vivo, but not endosome recruitment or interactions with Vta1 or ESCRT-III. Unlike the beta domain, which is also important for Vps4 assembly, the C-terminal helix is not required in vivo for Vps4 homotypic interaction or dominant-negative effects of Vps4-E233Q, carrying a mutation in the ATP hydrolysis site. Vta1 promotes assembly of hybrid complexes comprising Vps4-E233Q and Vps4 lacking an intact C-terminal helix in vitro. Formation of catalytically active hybrid complexes demonstrates an intersubunit catalytic mechanism for Vps4. One end of the C-terminal helix lies in close proximity to the second region of homology (SRH), which is important for assembly and intersubunit catalysis in AAA ATPases. We propose that Vps4 SRH function requires an intact C-terminal helix. Co-evolution of a distinct Vps4 SRH and C-terminal helix in meiotic clade AAA ATPases supports this possibility.  相似文献   

2.
BACKGROUND: Membrane fusion within the Paramyxoviridae family of viruses is mediated by a surface glycoprotein termed the "F", or fusion, protein. Membrane fusion is assumed to involve a series of structural transitions of F from a metastable (prefusion) state to a highly stable (postfusion) state. No detail is available at the atomic level regarding the metastable form of these proteins or regarding the transitions accompanying fusion. RESULTS: The three-dimensional structure of the fusion protein of Newcastle disease virus (NDV-F) has been determined. The trimeric NDV-F molecule is organized into head, neck, and stalk regions. The head is comprised of a highly twisted beta domain and an additional immunoglobulin-like beta domain. The neck is formed by the C-terminal extension of the heptad repeat region HR-A, capped by a four-helical bundle. The C terminus of HR-A is encased by a further helix HR-C and a 4-stranded beta sheet. The stalk is formed by the remaining visible portion of HR-A and by polypeptide immediately N-terminal to the C-terminal heptad repeat region HR-B. An axial channel extends through the head and neck and is fenestrated by three large radial channels located approximately at the head-neck interface. CONCLUSION: We propose that prior to fusion activation, the hydrophobic fusion peptides in NDV-F are sequestered within the radial channels within the head, with the central HR-A coiled coil being only partly formed. Fusion activation then involves, inter alia, the assembly of a complete HR-A coiled coil, with the fusion peptides and transmembrane anchors being brought into close proximity. The structure of NDV-F is fundamentally different than that of influenza virus hemagglutinin, in that the central coiled coil is in the opposite orientation with respect to the viral membrane.  相似文献   

3.
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ABC-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain, commonly called the “hinge” domain, by a long antiparallel coiled coil. Although the ATPase and hinge domains of SMC proteins have been the subject of extensive investigation, little is known about the coiled coil, in spite of its clear importance for SMC function. This limited knowledge is primarily due to a lack of structural information. We report here the first experimental constraints on the relative alignment of the N- and C-terminal halves of the MukB coiled coil, obtained by a combination of limited proteolysis and site-directed cross-linking approaches. Using these experimental constraints, phylogenetic data, and coiled-coil prediction algorithms, we propose a pairing scheme for the discontinuous segments in the coiled coil. This structural model will not only facilitate the study of the physiological role of this unusually long and flexible antiparallel coiled coil but also help to delineate the boundaries between MukB domains.  相似文献   

4.
Coronin 1 is a member of the coronin protein family specifically expressed in leukocytes and accumulates at sites of rearrangements of the F-actin cytoskeleton. Here, we describe that coronin 1 molecules are coiled coil-mediated homotrimeric complexes, which associate with the plasma membrane and with the cytoskeleton via two distinct domains. Association with the cytoskeleton was mediated by trimerization of a stretch of positively charged residues within a linker region between the N-terminal, WD repeat-containing domain and the C-terminal coiled coil. In contrast, neither the coiled coil nor the positively charged residues within the linker domain were required for plasma membrane binding, suggesting that the N-terminal, WD repeat-containing domain mediates membrane interaction. The capacity of coronin 1 to link the leukocyte cytoskeleton to the plasma membrane may serve to integrate outside-inside signaling with modulation of the cytoskeleton.  相似文献   

5.
6.
E. coli Hsp100 ClpB was recently identified as a critical part in a multi-chaperone system to play important roles in protein folding, protein transport and degradation in cell physiology. ClpB contains two nucleotide-binding domains (NBD1 and NBD2) within their primary sequences. NBD1 and NBD2 of ClpB can be classified as members of the large ATPase family known as ATPases associated with various cellular activities (AAA). To investigate how ClpB performs its ATPase activities for its chaperone activity, we have determined the crystal structure of ClpB nucleotide-binding domain 1 (NBD1) by MAD method to 1.80 A resolution. The NBD1 monomer structure contains one domain that comprises 11 alpha-helices and six beta-strands. When compared with the typical AAA structures, the crystal structure of ClpB NBD1 reveals a novel AAA topology with six-stranded beta-sheet as its core. The N-terminal portion of NBD1 structure has an extra beta-strand flanked by two extra alpha-helices that are not present in other AAA structures. Moreover, the NBD1 structure does not have a C-terminal helical domain as other AAA proteins do. No nucleotide molecule is bound with ClpB NBD1 in the crystal structure probably due to lack of the C-terminal helix domain in the structure. Isothermal titration calorimetry (ITC) studies of ClpB NBD1 and other ClpB deletion mutations showed that either ClpB NBD1 or NBD2 alone does not bind to nucleotides. However, ClpB NBD2 combined with ClpB C-terminal fragment can interact with one ADP or ATP molecule. ITC data also indicated that full-length ClpB could bind two ADP molecules or one ATP analogue ATPgammaS molecule. Further ATPase activity studies of ClpB and ClpB deletion mutants showed that only wild-type ClpB have ATPase activity. None of ClpB NBD1 domain, NBD2 domain and NBD2 with C-terminal fragment has detectable ATPase activities. On the basis of our structural and mutagenesis data, we proposed a "see-saw" model to illustrate the mechanisms by which ClpB performs its ATPase activities for chaperone functions.  相似文献   

7.
p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97.  相似文献   

8.
9.
10.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

11.
12.
Members of the family of ATPases associated with various cellular activities (AAA+) typically form homohexameric ring complexes and are able to remodel their substrates, such as misfolded proteins or protein-protein complexes, in an ATP-driven process. The molecular mechanism by which ATP hydrolysis is coordinated within the multimeric complex and the energy is converted into molecular motions, however, is poorly understood. This is partly due to the fact that the oligomers formed by AAA+ proteins represent a highly complex system and analysis depends on simplification and prior knowledge. Here, we present nucleotide binding and oligomer assembly kinetics of the AAA+ protein ClpB, a molecular chaperone that is able to disaggregate protein aggregates in concert with the DnaK chaperone system. ClpB bears two AAA+ domains (NBD1 and NBD2) on one subunit and forms homohexameric ring complexes. In order to dissect individual mechanistic steps, we made use of a reconstituted system based on two individual constructs bearing either the N-terminal (NBD1) or the C-terminal AAA+ domain (NBD2). In contrast to the C-terminal construct, the N-terminal construct does not bind the fluorescent nucleotide MANT-dADP in isolation. However, sequential mixing experiments suggest that NBD1 obtains nucleotide binding competence when incorporated into an oligomeric complex. These findings support a model in which nucleotide binding to NBD1 is dependent on and regulated by trans-acting elements from neighboring subunits, either by direct interaction with the nucleotide or by stabilization of a nucleotide binding-competent state. In this way, they provide a basis for intersubunit communication within the functional ClpB complex.  相似文献   

13.
We expressed the small subunit of smooth muscle myosin light chain phosphatase (MPs) in Escherichia coli, and have studied its molecular properties as well as its interaction with the targeting subunit (MPt). MPs (M(r) = 18,500) has an anomalously low electrophoretic mobility, running with an apparent M(r) of approximately 21,000 in sodium dodecyl sulfate-gel electrophoresis. CD spectroscopy shows that it is approximately 45% alpha-helix and undergoes a cooperative temperature-induced unfolding with a transition midpoint of 73 degrees C. Limited proteolysis rapidly degrades MPs to a stable C-terminal fragment (M(r) = 10,000) that retains most of the helical content. Rotary shadowing electron microscopy reveals that it is an elongated protein with two domains. Sedimentation velocity measurements show that recombinant MPt (M(r) = 107,000), intact MPs, and the 10-kDa MPs fragment are all dimeric, and that MPs and MPt form a complex with a molar mass consistent with a 1:1 heterodimer. Sequence analysis predicts that regions in the C-terminal portions of both MPs and MPt have high probabilities for coiled coil formation. A synthetic peptide from a region of MPs encompassing residues 77-116 was found to be 100% alpha-helical, dimeric, and formed a complex with MPt with a molecular mass corresponding to a heterodimer. Based on these results, we propose that MPs is an elongated molecule with an N-terminal head and a C-terminal stalk domain. It dimerizes via a coiled coil interaction in the stalk domain, and interacts with MPt via heterodimeric coiled coil formation. Since other proteins with known regulatory function toward MP also have predicted coiled coil regions, our results suggest that these regulatory proteins target MP via the same coiled coil strand exchange mechanism with MPt.  相似文献   

14.
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function.Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain.  相似文献   

15.
Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.  相似文献   

16.
17.
JH Liao  CI Kuo  YY Huang  YC Lin  YC Lin  CY Yang  WL Wu  WH Chang  YC Liaw  LH Lin  CI Chang  SH Wu 《PloS one》2012,7(7):e40226
Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA(+) (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA(+) motifs. Here we showed that these Lon-like proteases formed a clade distinct from LonA and LonB. Characterization of one such Lon-like protease from Meiothermus taiwanensis indicated that it formed a hexameric assembly with a hollow chamber similar to LonA/B. The enzyme was devoid of ATPase activity but retained an ability to bind symmetrically six nucleotides per hexamer; accordingly, structure-based alignment suggested possible existence of a non-functional AAA-like domain. The enzyme degraded unstructured or unfolded protein and peptide substrates, but not well-folded proteins, in ATP-independent manner. These results highlight a new type of Lon proteases that may be involved in breakdown of excessive damage or unfolded proteins during stress conditions without consumption of energy.  相似文献   

18.
Plectin is a cytoskeletal protein of >500 kDa that forms dumbbell-shaped homodimers comprising a central parallel alpha-helical coiled coil rod domain flanked by globular domains, thus providing a molecular backbone ideally suited to mediate the protein's interactions with an array of other cytoskeletal elements. Plectin self-associates and interacts with actin and intermediate filament cytoskeleton networks at opposite ends, and it binds at both ends to the hemidesmosomal transmembrane protein integrin beta-4, and likely to other junctional proteins. The central coiled coil rod domain can form bridges over long stretches and serves as a flexible linker between the structurally diverse N-terminal domain and the highly conserved C-terminal domain. Plectin is also a target of p34cdc2 kinase that regulates its dissociation from intermediate filaments during mitosis.  相似文献   

19.
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible “dog leash,” allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.  相似文献   

20.
Clérot D  Bernardi F 《Journal of virology》2006,80(22):11322-11330
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号