首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Productive areas are patchily distributed at sea and represent important feeding grounds for many marine organisms. Although pinnipeds are known to travel on direct routes and return regularly to particular feeding sites, the environmental information seals use to perform this navigation is as yet unknown. As atmospheric dimethyl sulphide (DMS) has been demonstrated to be a reliable indicator for profitable foraging areas, we tested seals for their ability to smell DMS at concentrations typical for the marine environment. Using a go/no-go response paradigm we determined the DMS detection threshold in two harbour seals (Phoca vitulina vitulina). DMS stimuli from 8.05 x 108 to 8 pmol (DMS)m(-3)(air) were tested against a control stimulus using a custom-made olfactometer. DMS-thresholds determined for both seals (20 and 13 pmol m(-3)) indicate that seals can detect ambient concentrations associated with high primary productivity, e.g. in the North Atlantic. Thus, seals possess an extraordinarily high olfactory sensitivity for DMS, which could provide a sensory basis for identifying or orienting to profitable foraging grounds.  相似文献   

2.
3.
 The biofiltration of dimethyl sulphide (Me2S) and other volatile sulphur compounds results in the accumulation of the metabolite sulphuric acid in the carrier material. Regeneration of an acidified (pH 4.7), Hyphomicrobium-MS3-inoculated compost biofilter degrading Me2S was not possible by trickling tap water (days 0–28) or a KH2PO4/K2HPO4 buffer solution (1.26 g PO3- 4 l-1, pH 7) (days 29–47) over the bioreactor at a superficial liquid flow rate of 34 lm-2 day-1. Since the protons produced displaced nutrient cations (Na+, K+, Ca2+, Mg2+, NH+ 4) from the cation-exchange sites on the compost material, 95% of the SO2- 4 was leached as the corresponding sulphate salts and not as sulphuric acid. Concomitantly, the pH of the compost material decreased from 4.7 to 3.9 over the 47 days rinsing period. Moreover, the rinsing procedure resulted in the leaching of essential microbial nutrients from the compost material, such as NH+ 4 (22.3% wash-out over the 47-day rinsing period) and PO3- 4 (39.3% washout over the 28-day tap-water rinsing period). However, mixing limestone powder into the Me2S-degrading compost biofilter was a successful approach to controlling the pH in the optimal range for the inoculum Hyphomicrobium MS3 (pH 6–7). A stoichiometric neutralisation reaction (molar ratio CaCO3/H2SO4=1.1) was observed between the CaCO3 added and the metabolite of the Me2S degradation, while high elimination capacities (above 100 g Me2S m-3 day-1) were obtained over a prolonged (more than 100 days) period. Received: 1 December 1995/Received revision: 26 April 1995 Accepted: 29 April 1996  相似文献   

4.
The applicability of dolomite particlesto control acidificationin a Hyphomicrobium MS3inoculated biofilter removingdimethyl sulphide (Me2S) wasstudied. While direct inoculationof the dolomite particles with theliquid microbial culture was notsuccessful, start-up ofMe2S-degradation in thebiofilter was observed when thedolomite particles were mixed with33% (wt/wt) of Hyphomicrobium MS3-inoculatedcompost or wood bark material.Under optimal conditions, anelimination capacity (EC) of 1680~g Me2S m-3 d-1 wasobtained for the compost/dolomitebiofilter. Contrary to a wood barkor compost biofilter, no reductionin activity due to acidificationwas observed in these biofiltersover a 235 day period because ofthe micro environmentneutralisation of the microbialmetabolite H2SO4 with thecarbonate in the dolomite material.However, performance of thebiofilter decreased when themoisture content of the mixedcompost/dolomite material droppedbelow 15%. Next to this, nutrientlimitation resulted in a gradualdecrease of the EC andsupplementation of a nitrogensource was a prerequisite to obtaina long-term high EC (> 250 gMe2S m-3 d-1) forMe2S. In relation to thisnitrogen supplementation, it wasobserved that stable ECs forMe2S were obtained when thisnutrient was dosed to the biofilterat a Me2S-C/NH4Cl-Nratio of about 10.Abbreviations:DW – dry weight,EC – elimination capacity,Me2S – dimethyl sulphide,OL – organic loading rate,VS - volatile solids  相似文献   

5.
Abstract Dimethyl sulphide (DMS) was degraded by acclimatized activated sludge and by a mixed culture of Thiobacillus thioparus TK-1 and Pseudomonas sp. AK-2. While both these organisms persisted in stable co-culture on DMS, it was found that T. thioparus TK-1 and the derived strain TK-m grew in pure culture on DMS, and oxidized DMS with an apparent K m of 4.5 × 10−5 M. During growth, all the DMS-sulphur was oxidized stoichiometrically to sulphate but no methanol was detected in pure cultures of TK-m. DMS-carbon was probably converted to CO2, since the fixation of 14CO2 was progressively diluted during growth of a culture on 14CO2 and DMS. Growth yields were consistent with autotrophic growth, dependent on the oxidation of the methyl residues to CO2 (probably with formaldehyde as a first intermediate) and the sulphide to sulphate. The organism thus appears to exhibit a mixture, from the one substrate, of chemolithotrophic and methylotrophic energy generation supporting autotrophic growth with CO2 fixation.  相似文献   

6.
7.
GRASP65, a structural protein of the Golgi apparatus, has been linked to the sensing of Golgi structure and the integration of this information with the control of mitotic entry in the form of a Golgi checkpoint. We show that Cdk1-cyclin B is the major kinase phosphorylating GRASP65 in mitosis, and that phosphorylated GRASP65 interacts with the polo box domain of the polo-like kinase Plk1. GRASP65 is phosphorylated in its C-terminal domain at four consensus sites by Cdk1-cyclin B, and mutation of these residues to alanine essentially abolishes both mitotic phosphorylation and Plk1 binding. Expression of the wild-type GRASP65 C-terminus but not the phosphorylation defective mutant in normal rat kidney cells causes a delay but not the block in mitotic entry expected if this were a true cell cycle checkpoint. These findings identify a Plk1-dependent signalling mechanism potentially linking Golgi structure and cell cycle control, but suggest that this may not be a cell cycle checkpoint in the classical sense.  相似文献   

8.
A method for the headspace analysis of dimethyl sulphide in blood and adipose tissue has been established. Blood (0.2 ml) or adipose tissue (0.5 g) with added dimethyl sulphide was sealed in a 10-ml vial using PTFE sheet to prevent escape of dimethyl sulphide from the headspace. Equilibration was performed at 60°C for 4 h, and 20 μl of gaseous phase sampled from the headspace was subjected to gas chromatography (with flame photometric detection). Calibration curves were prepared for the two samples. Linearity was observed in the range from 5–10 μg to 2 mg.  相似文献   

9.
10.
Regulation of actin polymerization is essential for cell functioning. Here, we predict a novel phenomenon-the force-driven polymerization of actin filaments mediated by proteins of the formin family. Formins localize to the barbed ends of actin filaments, but, in contrast to the standard capping proteins, allow for actin polymerization in the barbed direction. First, we show that the mechanism of such "leaky capping" can be understood in terms of the elasticity of the formin molecules. Second, we demonstrate that if a pulling force acts on the filament end via the leaky cap, the elastic stresses can drive actin polymerization. We estimate that a moderate pulling force of approximately 3.4 pN is sufficient to reduce the critical actin concentration required for barbed end polymerization by an order of magnitude. Furthermore, the pulling force increases the polymerization rate. The suggested mechanism of force-driven polymerization could be a key element in a variety of cellular mechanosensing devices.  相似文献   

11.
Abstract.  The identification of infochemicals for parasitoid females is a critical issue in applied and fundamental parasitoid research. The olfactory location of host and its microhabitat by Fopius arisanus (Sonan, 1932) (Hymenoptera: Braconidae), an egg-pupal parasitoid of fruit flies (Diptera: Tephritidae), is investigated. Potential sources of volatiles are placed in opaque traps and tested in field cages, under seminatural conditions. Fopius arisanus females respond positively to synomones from mango leaves and from fruits belonging to many botanical families, including the nonhost plant strawberry. They prefer fruits infested by Tephritidae to uninfested ones but do not discriminate between fresh and old infestations. Fopius arisanus females are attracted by the odours of faeces of the tephritid fly Bactrocera zonata . They exhibit remote detection of a volatile kairomone coating the egg mass of all tested Tephritidae species but absent in the egg mass of the Muscidae Stomoxys calcitrans . All these infochemicals are volatile but only those emanating from fruit and from faeces are attractants perceived before landing. The relationships between this apparent generalist behaviour and the dietary specialization of F. arisanus are discussed, according to its ecology and behaviour in its natural environment.  相似文献   

12.
Structure-switching signaling aptamers are nucleic acids that change shape upon binding to a specific ligand. Previously, we applied a new in vitro selection strategy to isolate structure-switching RNA aptamers responsive to the aminoglycoside antibiotic tobramycin. Here, we report the results of mutational analysis, secondary structure modeling, and ligand-specificity studies that suggest a mechanism for tobramycin-triggered structure switching.  相似文献   

13.
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.  相似文献   

14.
Microzooplankton herbivory is considered to be a key processby which dimethylsulphoniopropionate (DMSP) in phytoplanktonis transformed to climatically active dimethyl sulphide (DMS).However, there is little firm evidence to show that this occursin natural waters. We used direct measurements of microzooplanktongrazing rates and net DMS production in the southern North Seato examine the impact of herbivory on DMS production. Estimatesof the particulate DMSP ingested by microzooplankton in theform of Phaeocystis sp. were found to account for the DMS productionrates observed.  相似文献   

15.
Marinobacterium sp. strain DMS-S1 is a unique marine bacterium that can use dimethyl sulphide (DMS) as a sulphur source only in the presence of light. High-performance liquid chromatography (HPLC) analyses of the culture supernatant revealed that excreted factors, which could transform DMS to dimethyl sulphoxide (DMSO) under light, are FAD and riboflavin. In addition, FAD appeared to catalyse the photolysis of DMS to not only DMSO but also methanesulphonate (MSA), formate, formaldehyde and sulphate. As strain DMS-S1 can use sulphate and MSA as a sole sulphur source independently of light, the excretion of flavins appeared to support the growth on DMS under light. Furthermore, three out of 12 marine bacteria from IAM culture collection were found to be able to grow on DMS with the aid of photolysis by the flavins excreted. This is the first report that bacteria can use light to assimilate oceanic organic sulphur compounds outside the cells by excreting flavins as photosensitizers.  相似文献   

16.
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ~150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.  相似文献   

17.
FcalphaRI, the receptor specific for the Fc region of immunoglobulin A (IgA), is responsible for IgA-mediated phagocytosis, oxidative burst, and antibody-dependent cellular cytotoxicity. Using the techniques of analytical ultracentrifugation and equilibrium gel-filtration, we show that two FcalphaRI molecules bind to a single Fcalpha homodimer. Surface plasmon resonance studies confirm the 2:1 stoichiometry of binding, with equilibrium dissociation constants of 176 nM and 431 nM for the first and second binding events, respectively. The binding affinity decreases at acidic pH in a manner consistent with protonation of a single histidine residue in the binding site. A thermodynamic analysis indicates that the histidine residue does not participate in a salt-bridge in the complex; in fact, less than 10% of the free energy of binding was contributed by electrostatic interactions. The bivalent, pH-dependent interaction between FcalphaRI and IgA has important implications for cytokine-dependent phagocytosis of IgA and the FcalphaRI-mediated degradation or recycling of IgA.  相似文献   

18.
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.  相似文献   

19.
Donahue CP  Kosik KS 《Genomics》2004,83(1):59-65
Mutations in Notch3 cause the syndrome CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). The mechanism by which these mutations result in a CADASIL phenotype has been widely speculated upon. A first step toward understanding a disease mechanism is to learn whether the mutations result in the loss of Notch3 function, in particular, its role in signaling or in the gain of a novel function. Notch3 genomic sequences were analyzed for sites of conservation across species. We present here a bioinformatic analysis of the Notch paralogs and orthologs that suggest that CADASIL mutations result in a gain of function. This finding diminishes the likelihood that a Notch3 signaling deficit is responsible for the phenotype and increases the likelihood that CADASIL joins the growing list of neurological diseases with protein deposits due to misfolding and aggregation.  相似文献   

20.
Li Q 《Genome biology》2006,7(10):238
A Melanesian variant of the genetic disease alpha-thalassemia has recently been shown to be due to a single-nucleotide polymorphism located between the adult alpha-globin genes and their enhancers. The finding that this mutation creates a novel promoter provides support for a mechanism of gene regulation by facilitated chromatin looping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号