共查询到20条相似文献,搜索用时 15 毫秒
1.
Sil'kis IG 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2000,50(6):899-912
The model of simultaneous interrelated modification in the efficacy of synaptic inputs to different neurons of the olivary-cerebellar network is developed. The model is based on the following features of the network: simultaneous activation of the input layer (granule) cells and the output layer (deep cerebellar nuclei) cells by mossy fibers; simultaneous activation of Purkinje cells and cerebellar cells of the input and output layers by climbing fibers and their collaterals; the existence of local feedback excitatory, inhibitory, and disinhibitory circuits. The rise (decrease) of posttetanic Ca2+ concentration in reference to the level produced by previous stimulation causes the decrease (increase) in cGMP-dependent protein kinase G activity, and increase (decrease) inprotein phosphatase 1 activity. Subsequent dephosphorylation (phosphorylation) of ionotropic receptors results in simultaneous LTD (LTP) of the excitatory input together with the LTP (LTD) of the inhibitory input to the same neuron. The character of interrelated modifications of synapses at different cerebellar levels strongly depends on the olivary cell activity. In the presence (absence) of the signal from the inferior olive LTD (LTP) of the output cerebellar signal can be induced. 相似文献
2.
The conception and main principles of the compartmental approach to the modeling of neuronal networks are presented. Excitatory and inhibitory ties are described, and reducible and nonreducible neuronal networks are considered. The periodical solution in models of neuronal networks is the model of normal rhythmic (e.g., respiratory) activity. The role of external (chemoreceptor drives) is discussed. The biological interpretation of the results of modeling is given. The observed biological phenomena are considered. 相似文献
3.
A neural network mosaic model was developed to investigate the spatial-temporal properties of the human pupillary control
system. It was based on the double-layer neural network model developed by Cannon and Robinson and the pupillary dual-path
model developed by Sun and Stark. The neural network portion of the model received its input from a sensor array and consisted
of a retina-like two-dimensional neuronal layer. The dual-path portion of the model was composed of interconnections of the
neurons that formed a mosaic of AC transient and DC sustained paths. The spatial aggregates of the AC and DC signals were
input to the AC and DC summing neurons, respectively. Finally, the weighted sum of the aggregate AC and DC signals provided
the output for driving the pupillary response. An important property of the model was that it could adaptively learn from
training samples by adjustment of the weights. The neural network mosaic model showed excellent performance in simulating
both the traditional pupillary phenomena and the new spatial stimulation findings such as responses to change in stimulus
pattern and shift of light spot. Moreover, the model could also be used for the diagnosis of clinical deficits and image processing
in machine vision.
Received: 12 December 1997 / Accepted in revised form: 22 April 1998 相似文献
4.
Alessandro C Ramos Arnoldo R Fa?anha Pedro T Lima José A Feijó 《Plant signaling & behavior》2008,3(10):850-852
Environmental and developmental signals can elicit differential activation of membrane proton (H+) fluxes as one of the primary responses of plant and fungal cells. In recent work,1 we could determine that during the presymbiotic growth of arbuscular mycorrhizal (AM) fungi specific domains of H+ flux are activated by clover root factors, namely host root exudates or whole root system. Consequently, activation on hyphal growth and branching were observed and the role of plasma membrane H+-ATPase was investigated. The specific inhibitors differentially abolished most of hyphal H+ effluxes and fungal growth. As this enzyme can act in signal transduction pathways, we believe that spatial and temporal oscillations of the hyphal H+ fluxes could represent a pH signature for both early events of the AM symbiosis and fungal ontogeny.Key words: H+-specific vibrating probe, pH signatures, arbuscular mycorrhiza, pH signalling, Gigaspora margaritaThe 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal (AM) fungi is one of the most ancient, abundant and ecologically important symbiosis on Earth.2,3The development of AM interaction starts before the physical contact between the host plant roots and the AM fungus. The hyphal growth and branching are induced by the root factors exudated by host plants, followed by the formation of appressorium leading to the hyphal penetration in the root system. These root factors seems to be specifically synthesized by host plants, since exudates from non-host plants are not able to promote neither hyphal differentiation nor appressorium formation.4,5 Most root exudates contain several host signals or better, active compounds including flavonoids6,19 and strigolactones,7,8 however many of them are not yet known.Protons (H+) may have an important role on the fungal growth and host signal perception.1 In plant and fungal cells, H+ can be pumped out through two different mechanisms: (1) the activity of the P-type plasma membrane (PM) H+-ATPase9 and (2) PM redox reactions.10 The proportional contribution from both mechanisms is not known, but in most plant cells the PM H+-ATPase seems to be the major responsible by the H+ efflux across plasma membrane. AM Fungal cells also energize their PM using P-type H+-pumps quite similar to the plant ones. Indeed, some genes codifying isoforms of P-type H+-ATPase have been isolated of AM fungi,11–13 and AM fungal ATP hydrolysis activity was shown by cytochemistry, localized mainly in the first 70 µm from the germ tube tip.14 This structural evidence correlates with data obtained by H+-specific vibrating probe (Fig. 1A and B), which indicates that the H+ efflux in Gigaspora margarita is more intense in the subapical region of the lateral hyphae1 (Fig. 1A). Furthermore, the correlation between the cytosolic pH profile previously obtained by Jolicoeur et al.,15 with the H+ efflux pattern (erythrosine-dependent), seems to clearly indicate that an active PM H+-ATPase takes place at the subapical hyphal region. Using orthovanadate, we could show that those H+ effluxes are susceptible mainly in the subapical region, but no effect in the apical was found.1 Recently, a method to use fluorescent marker expression in an AM fungus driven by arbuscular mycorrhizal promoters was published.31 It could be adjusted as an alternative to measure “in vivo” PM H+-ATPase expression in AM fungal hyphae and their responses to root factors.31Open in a separate windowFigure 1(A) H+ flux profile along growing secondary hyphae of G. margarita in the presence (open squares) or absence (closed squares) of erythrosin B and its correlation with cytosolic pH (pHc) data described by Jolicoeur et al.,15 (dotted line). Dotted area depicts the region with higher susceptibility to erythrosin B. (B) ion-selective electrode near to AM fungal hyphae. (C) Stimulation on hyphal H+ efflux after incubation with root factors or whole root system. R, roots; RE, root exudates; CO2, carbon dioxide; CWP, cell wall proteins; GR24, synthetic strigolactone. The medium pH in all treatment was monitored and remained about 5.7, including with prior CO2 incubation. Means followed by the same letter are statistically equal by Duncan''s test at p < 5%.The H+ electrochemical gradient generated by PM H+-ATPases provides not only driving force for nutrient uptake,9,16 but also can act as an intermediate in signal transduction pathways.18 The participation of these H+ pumps in cell polarity and tip growth of plant cells was recently reported,27 addressing their crucial role on apical growth.28 Naturally, in the absence of root factors the AM fungi have basal metabolic8,21–23 and respiratory activity.24 However when root signals are recognized and processed by AM fungal cells they might become activated.22 We thus searched for pH signatures that could reflect the alterations on fungal metabolism in response to external stimuli. In fact, preliminary analyses from our group demonstrate that AM fungal hyphae increase their H+ efflux in response not only to root exudates recognition, but also to other root factors (Fig. 1C). The incubation for 30 min of AM fungal hyphae with several root factors induces hyphal H+ efflux similar to the response to intact root system (5 days of incubation). The major increases were found with 1% CO2 (750%) followed by root cell wall proteins (221%), root exudates (130%) and synthetic strigolactone (5%) (Fig. 1C). Those stimulations could define the transition from the state without root signals to the presymbiotic developmental stage (Fig. 1C). In the case of CO2, the incorporation of additional carbon could represent a new source of energy, since CO2 dark fixation takes place in Glomus intraradices germ tubes.22,25Interestingly, after the treatment with synthetic strigolactone (10−5 M GR24), no significant stimulation was found compared to the remaining factors (Fig. 1C). It opens the question if the real effect of strigolactone is restrict to hyphal branching and does not intervene in very fast response pathways. Likewise, strigolactones need additional time to exhibit an effect, as recently discussed by Steinkellner et al.,26 However, at the moment, no comprehensive electrophysiological analyses are presently available separating the effects of strigolactone and some flavonoids in AM fungal hyphae.The next target of our work is the study of ionic responses of single germ tubes or primary hyphae to root factors (Fig. 2). As reported by Ramos et al.,1 we have been observing that the pattern of ion fluxes at the apical zone of primary hyphae is differentiated from secondary or lateral hyphae. In the primary, two interesting responses were detected in the absence of root factors: (1) a “dormant Ca2+ flux” and (2) Cl− or anion fluxes at the same direction of H+ ions, suggesting a possible presence of H+/Cl− symporters at the apex, similarly to what occurs in root hairs (Fig. 2).30 In the presence of root factors such as root exudates the stimulated influxes of Cl− (anion), H+, Na+ and effluxes of K+ and Ca2+ are activated. It can explain why the AM fungi hyphal tips are depolarized20,29 during the period without root signals—“asymbiosis”—as long as K+ efflux and H+ influx occur simultaneously. Indeed, H+ as well as Ca2+ ions may act as second messengers, where extra and intracellular transient pH changes are preconditions for a number of processes, including gravity responses and possibly in plant-microbe interactions.17,30Open in a separate windowFigure 2Ion dynamics in the apex of primary hyphae of arbuscular mycorrhizal fungi. It represents the Stage 1 described in Ramos et al.1 After treatment with root factors, an activation of Ca2+ efflux is observed at the hyphal apex.Clearly, further data on the mechanism of action of signaling molecules such as strigolactones over the signal transduction and ion dynamics in AM fungi will be very important to improve our understanding of the molecular bases of the mycorrhization process. Future studies are necessary in order to provide basic knowledge of the ion signaling mechanisms and their role on the response of very important molecules playing at the early events of AM symbiosis. 相似文献
5.
Excessive synchronization of neurons in cerebral cortex is believed to play a crucial role in the emergence of neuropsychological disorders such as Parkinson’s disease, epilepsy and essential tremor. This study, by constructing a modular neuronal network with modified Oja’s learning rule, explores how to eliminate the pathological synchronized rhythm of interacted busting neurons numerically. When all neurons in the modular neuronal network are strongly synchronous within a specific range of coupling strength, the result reveals that synaptic plasticity with large learning rate can suppress bursting synchronization effectively. For the relative small learning rate not capable of suppressing synchronization, the technique of nonlinear delayed feedback control including differential feedback control and direct feedback control is further proposed to reduce the synchronized bursting state of coupled neurons. It is demonstrated that the two kinds of nonlinear feedback control can eliminate bursting synchronization significantly when the control parameters of feedback strength and feedback delay are appropriately tuned. For the former control technique, the control domain of effective synchronization suppression is similar to a semi-elliptical domain in the simulated parameter space of feedback strength and feedback delay, while for the latter one, the effective control domain is similar to a fan-shaped domain in the simulated parameter space. 相似文献
6.
We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. 相似文献
7.
The effects of external stimuli (ES) and feeding motivations on area-7 neuronal impulse responses (IR) elicited by unconditioned and conditioned stimulation in alert cats were investigated. In untrained cats, preliminary (by 1 sec) action of ES resulted in the disappearance of impulse responses to electrical stimulation of the forepaw (EFS) in the first (no more than five-eight) executions; the responses gradually reappeared and in subsequent executions reestablished their former magnitude. The emergence of feeding motivation excitation in the cats, elicited by food presentation, also promoted disappearance of the initial responses to EFS; these were reestablished only after the cats were quieted. In conditioned-reflex cats, the action of the ES, which had been suppressed after onset of the reflex, as well as lowering of initial feeding motivation level (caused by natural satiation of the cats or by change in quality of the reinforcing food item), led to increase in latent periods (by 50–250 msec) and prolongation of neuronal responses to the conditioning stimulus (CS); but these parameters were unchanged during performance of trained movements. Neuronal response lag time to the action of the CS was defined by ES delivery time and by level of feeding excitation in the cats. The reason for the variation of neuronal responses to unconditioned and conditioned stimulation in the parietal cortex is assumed to be associated with variation in exteroreceptive attention level of cats under the effects of stimuli and altered metabolism.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 564–574, September–October, 1991. 相似文献
8.
Serotonin (10?8M) produced opposite long-lasting (up to 10 min) effects on acetylcholine-elicited contractions of different buccal mass muscles of Aplysia. Contractions of the dorsal extrinsic muscle and accessory radula closer muscle were enhanced by serotonin; whereas contractions of the ventral extrinsic muscles were inhibited by serotonin. The effect of higher concentrations of serotonin on dorsal and ventral extrinsic muscles was in the same direction as at 10?8M but was greater in both magnitude and duration. The phase of feeding-protraction or retraction—during which a muscle is active—is not correlated with the direction of modulation produced by serotonin. 相似文献
9.
Silkis I 《Bio Systems》2000,54(3):141-149
The model of three-layer olivary-cerebellar neural network with modifiable excitatory and inhibitory connections between diverse elements is suggested. The same Hebbian modification rules are proposed for Purkinje cells, granule (input) cells, and deep cerebellar nuclei (output) cells. The inverse calcium-dependent modification rules for these cells and hippocampal/neocortical neurones or Golgi cells are conceivably the result of the involvement of cGMP and cAMP in postsynaptic processes. The sign of simultaneous modification of excitatory and inhibitory inputs to a cell is opposite and determined by the variations in pre- and/or postsynaptic cell activity. Modification of excitatory transmission between parallel fibers and Purkinje cells, mossy fibers and granule cells, and mossy fibers and deep cerebellar nuclei cells essentially depends on inhibition effected by stellate/basket cells, Golgi cells and Purkinje cells, respectively. The character of interrelated modifications of diverse synapses in all three layers of the network is influenced by olivary cell activity. In the absence (presence) of a signal from inferior olive, the long-term potentiation (depression) in the efficacy of a synapse between input mossy fiber and output cell can be induced. The results of the suggested model are in accordance with known experimental data. 相似文献
10.
Responses of a complex receptive field of visual cortex of the cat are determined by the energy of stimuli in the band pass of equivalent space frequency characteristic of the receptive field. This is a proof that the complex receptive fields are spatial frequency band pass filters. 相似文献
11.
Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be read out with support of short-term plasticity, and that it could contribute to the longevity of memories. 相似文献
12.
Geier P Lagler M Boehm S Kubista H 《American journal of physiology. Cell physiology》2011,300(4):C937-C949
L-type voltage-gated calcium channels (LTCCs) have long been considered as crucial regulators of neuronal excitability. This role is thought to rely largely on coupling of LTCC-mediated Ca(2+) influx to Ca(2+)-dependent conductances, namely Ca(2+)-dependent K(+) (K(Ca)) channels and nonspecific cation (CAN) channels, which mediate afterhyperpolarizations (AHPs) and afterdepolarizations (ADPs), respectively. However, in which manner LTCCs, K(Ca) channels, and CAN channels co-operate remained scarcely known. In this study, we examined how activation of LTCCs affects neuronal depolarizations and analyzed the contribution of Ca(2+)-dependent potassium- and cation-conductances. With the use of hippocampal neurons in primary culture, pulsed current-injections were applied in the presence of tetrodotoxin (TTX) for stepwise depolarization and the availability of LTCCs was modulated by BAY K 8644 and isradipine. By varying pulse length and current strength, we found that weak depolarizing stimuli tend to be enhanced by LTCC activation, whereas in the course of stronger depolarizations LTCCs counteract excitation. Both effect modes appear to involve the same channels that mediate ADP and AHP, respectively. Indeed, ADPs were activated at lower stimulation levels than AHPs. In the absence of TTX, activation of LTCCs prolonged or shortened burst firing, depending on the initial burst duration, and invariably augmented brief unprovoked (such as excitatory postsynaptic potentials) and provoked electrical events. Hence, regulation of membrane excitability by LTCCs involves synchronous activity of both excitatory and inhibitory Ca(2+)-activated ion channels. The overall enhancing or dampening effect of LTCC stimulation on excitability does not only depend on the relative abundance of the respective coupling partner but also on the stimulus intensity. 相似文献
13.
We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási–Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree \(l^*\) and the asymmetry parameter \(\Delta l\) in the SFN, and Matthew effects are also found to occur by varying \(l^*\) and \(\Delta l\). Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP. 相似文献
14.
Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates 总被引:6,自引:0,他引:6
The ventral intraparietal area (VIP) is a multimodal parietal area, where visual responses are brisk, directional, and typically selective for complex optic flow patterns. VIP thus could provide signals useful for visual estimation of heading (self-motion direction). A central problem in heading estimation is how observers compensate for eye velocity, which distorts the retinal motion cues upon which perception depends. To find out if VIP could be useful for heading, we measured its responses to simulated trajectories, both with and without eye movements. Our results showed that most VIP neurons very strongly signal heading direction. Furthermore, the tuning of most VIP neurons was remarkably stable in the presence of eye movements. This stability was such that the population of VIP neurons represented heading very nearly in head-centered coordinates. This makes VIP the most robust source of such signals yet described, with properties ideal for supporting perception. 相似文献
15.
Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input 总被引:2,自引:0,他引:2
Neurons receive a continual stream of excitatory and inhibitory synaptic inputs. A conductance-based neuron model is used to investigate how the balanced component of this input modulates the amplitude of neuronal responses. The output spiking rate is well described by a formula involving three parameters: the mean and variance of the membrane potential and the effective membrane time constant Q. This expression shows that, for sufficiently small Q, the level of balanced excitatory-inhibitory input has a nonlinear modulatory effect on the neuronal gain. 相似文献
16.
Choline is an essential component of Acetylcholine (ACh) biosynthesis pathway which requires high-affinity Choline transporter (ChT) for its uptake into the presynaptic terminals of cholinergic neurons. Previously, we had reported a predominant expression of ChT in memory processing and storing region of the Drosophila brain called mushroom bodies (MBs). It is unknown how ChT contributes to the functional principles of MB operation. Here, we demonstrate the role of ChT in Habituation, a non-associative form of learning. Odour driven habituation traces are laid down in ChT dependent manner in antennal lobes (AL), projection neurons (PNs), and MBs. We observed that reduced habituation due to knock-down of ChT in MBs causes hypersensitivity towards odour, suggesting that ChT also regulates incoming stimulus suppression. Importantly, we show for the first time that ChT is not unique to cholinergic neurons but is also required in inhibitory GABAergic neurons to drive habituation behaviour. Our results support a model in which ChT regulates both habituation and incoming stimuli through multiple circuit loci via an interplay between excitatory and inhibitory neurons. Strikingly, the lack of ChT in MBs shows characteristics similar to the major reported features of Autism spectrum disorders (ASD), including attenuated habituation, sensory hypersensitivity as well as defective GABAergic signalling. Our data establish the role of ChT in habituation and suggest that its dysfunction may contribute to neuropsychiatric disorders like ASD. 相似文献
17.
Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. 总被引:6,自引:0,他引:6
E D Young G A Spirou J J Rice H F Voigt 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1992,336(1278):407-413
The dorsal division of the cochlear nucleus (DCN) is the most complex of its subdivisions in terms of both anatomical organization and physiological response types. Hypotheses about the functional role of the DCN in hearing are as yet primitive, in part because the organizational complexity of the DCN has made development of a comprehensive and predictive model of its input-output processing difficult. The responses of DCN cells to complex stimuli, especially filtered noise, are interesting because they demonstrate properties that cannot be predicted, without further assumptions, from responses to narrow band stimuli, such as tones. In this paper, we discuss the functional organization of the DCN, i.e. the morphological organization of synaptic connections within the nucleus and the nature of synaptic interactions between its cells. We then discuss the responses of DCN principal cells to filtered noise stimuli that model the spectral sound localization cues produced by the pinna. These data imply that the DCN plays a role in interpreting sound localization cues; supporting evidence for such a role is discussed. 相似文献
18.
Sil'kis IG 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2000,50(3):372-387
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise. 相似文献
19.
Responses of 579 neurons in a slab of cerebral cortex (3 weeks after its isolation) to intracortical stimulation, with a distance of 0.5, 1.0, and 2.0 mm between recording and stimulating electrodes, were tested intercellularly and histological changes in a similar slab were studied in experiments on cats. Primary IPSPs were shown to develop in the chronically isolated slab in a much larger number of neurons than in the acutely isolated slab. Latent periods of IPSPs in all series of experiments did not exceed 10 msec, and most IPSPs were mono- and disynaptic. The amplitude and duration of the IPSPs were similar to those observed in the acutely isolated slab and intact auditory cortex in cats. It is concluded that local intracortical neuronal chains along which impulses evoking an inhibitory effect in the terminal neuron of the chain are transmitted are of relatively short length. Such chains may participate in local processing of incoming information. Analysis of the distribution of neurons responding by primary IPSPs by duration of their latent periods and depth in the slab in each series of experiments revealed a spatial and temporal mosaic of inhibitory responses in the chronically isolated slab of auditory cortex and showed that this mosaic is due to intracortical mechanisms.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 152–161, March–April 1984. 相似文献
20.
Using computer simulation of electrical processes in a GABA-ergic interneuronal network, we found that synchronization of
electrical discharges of the neurons is critically dependent on the geometrical size of the virtual network. If the size,
under our simulation conditions, was either less than 2.1 mm or greater than 4.2 mm, the network was not able to generate
synchronous discharges. Our findings may explain the geometrical size-dependent gamma rhythm generated by neurons of the hippocampal
networks.
Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 264–267, May–June, 2008. 相似文献