首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.  相似文献   

2.
神经工程与脑-机接口   总被引:2,自引:0,他引:2  
高上凯 《生命科学》2009,(2):177-180
神经工程是近年来在生物医学工程领域备受关注的学科发展新方向。它运用神经科学和工程学的方法来分析神经功能并为神经功能缺失与紊乱的修复提供新的解决问题的方案;而脑-机接口则是当前神经工程领域中最活跃的研究方向之一。脑-机接口是在脑与计算机或其他外部设备之间建立的直接的通信和交流通道。在脑-机接口系统中,具有特定模式的脑信号携带着受试者希望表达的意愿,计算机将接收到的脑信号转换成相应的控制命令,于是那些有运动障碍的残疾人就可以利用脑-机接口系统来实现与外界的交流与对外部设备的控制。在基于脑电信号的脑-机接口系统中,受试者产生的脑信号大致可以分为内源性(endogenous)和外源性(exogenous)两类。其中外源性的成分主要取决于外部物理刺激(视觉、听觉或触觉)的参数而与认知行为无关;而内源性成分则主要由认知行为产生而与外部的物理刺激无关。在许多情况下,脑-机接口中的瞬态诱发电位通常都同时包含着内源性和外源性两种成分。寻找新的脑-机接口模式使之能显著提升记录脑电信号中的内源性与外源性成分在脑-机接口研究中具有重要意义。本文中将介绍一种基于运动起始时刻(motion—onset)的新的脑-机接口实验范式。本文的最后还探讨了脑-机接口未来发展的趋势与展望。  相似文献   

3.
In this study we compared tactile and visual feedbacks for the motor imagery-based brain–computer interface (BCI) in five healthy subjects. A vertical green bar from the center of the fixing cross to the edge of the screen was used as visual feedback. Vibration motors that were placed on the forearms of the right and the left hands and on the back of the subject’s neck were used as tactile feedback. A vibration signal was used to confirm the correct classification of the EEG patterns of the motor imagery of right and left hand movements and the rest task. The accuracy of recognition in the classification of the three states (right hand movement, left hand movement, and rest) in the BCI without feedback exceeded the random level (33% for the three states) for all the subjects and was rather high (67.8% ± 13.4% (mean ± standard deviation)). Including the visual and tactile feedback in the BCI did not significantly change the mean accuracy of recognition of mental states for all the subjects (70.5% ± 14.8% for the visual feedback and 65.9% ± 12.4% for the tactile feedback). The analysis of the dynamics of the movement imagery skill in BCI users with the tactile and visual feedback showed no significant differences between these types of feedback. Thus, it has been found that the tactile feedback can be used in the motor imagery-based BCI instead of the commonly used visual feedback, which greatly expands the possibilities of the practical application of the BCI.  相似文献   

4.
Hidden Markov models (HMM) are introduced for the offline classification of single-trail EEG data in a brain-computer-interface (BCI). The HMMs are used to classify Hjorth parameters calculated from bipolar EEG data, recorded during the imagination of a left or right hand movement. The effects of different types of HMMs on the recognition rate are discussed. Furthermore a comparison of the results achieved with the linear discriminant (LD) and the HMM, is presented.  相似文献   

5.
The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system.  相似文献   

6.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

7.
This paper proposes a new method for feature extraction and recognition of epileptiform activity in EEG signals. The method improves feature extraction speed of epileptiform activity without reducing recognition rate. Firstly, Principal component analysis (PCA) is applied to the original EEG for dimension reduction and to the decorrelation of epileptic EEG and normal EEG. Then discrete wavelet transform (DWT) combined with approximate entropy (ApEn) is performed on epileptic EEG and normal EEG, respectively. At last, Neyman–Pearson criteria are applied to classify epileptic EEG and normal ones. The main procedure is that the principle component of EEG after PCA is decomposed into several sub-band signals using DWT, and ApEn algorithm is applied to the sub-band signals at different wavelet scales. Distinct difference is found between the ApEn values of epileptic and normal EEG. The method allows recognition of epileptiform activities and discriminates them from the normal EEG. The algorithm performs well at epileptiform activity recognition in the clinic EEG data and offers a flexible tool that is intended to be generalized to the simultaneous recognition of many waveforms in EEG.  相似文献   

8.
基于节律性脑电信号的脑-机接口   总被引:4,自引:0,他引:4  
高上凯 《生命科学》2008,20(5):722-724
脑-机接口系统是一个不依靠外周神经和肌肉组织等而实现大脑和外界装置之间直接的交流和控制的通道。它为那些运动障碍的残疾人表达自己的意愿和实现对外部设备的控制提供了一种新的强大的技术支持。基于脑电的脑-机接口作为一种非侵入型的技术引起了该领域很多人的关注。基于脑电的脑-机接口采用了很多种类型的脑电信号。其中,振荡性的脑电图由于有较高的幅值和对噪声不敏感等特性而体现出极大的优势。也是由于这些原因,振荡性的脑电图变成了脑-机接口的应用中非常成功的设计之一。本文要介绍主要的基于脑电的脑-机接口中的两种,分别是稳态视觉诱发电位和基于运动本体感觉节律的脑-机接口。作者将详细的叙述该研究的生理背景、脑-机接口的参数,以及该系统的构造及信号处理的方法,并且会演示一些具有潜在应用价值的科研成果。  相似文献   

9.
The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increase the number of control dimensions of a brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discriminates EEG signals corresponding to rest, imaginary grasp movements, and imaginary elbow movements. Besides, the differences between simple motor imagery and goal-oriented motor imagery in terms of their topographical distributions and classification accuracies are also being investigated. To the best of our knowledge, both problems have not been explored in the literature. Based on the EEG data recorded from 12 able-bodied individuals, we have demonstrated that same-limb motor imagery classification is possible. For the binary classification of imaginary grasp and elbow (goal-oriented) movements, the average accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against imaginary grasp and elbow movements, the average classification accuracy achieved is 60.7%, which is greater than the random classification accuracy of 33.3%. Our results also show that goal-oriented imaginary elbow movements lead to a better classification performance compared to simple imaginary elbow movements. This proposed BCI system could potentially be used in controlling a robotic rehabilitation system, which can assist stroke patients in performing task-specific exercises.  相似文献   

10.
《IRBM》2022,43(2):107-113
Background and objectiveAn important task of the brain-computer interface (BCI) of motor imagery is to extract effective time-domain features, frequency-domain features or time-frequency domain features from the raw electroencephalogram (EEG) signals for classification of motor imagery. However, choosing an appropriate method to combine time domain and frequency domain features to improve the performance of motor imagery recognition is still a research hotspot.MethodsIn order to fully extract and utilize the time-domain and frequency-domain features of EEG in classification tasks, this paper proposed a novel dual-stream convolutional neural network (DCNN), which can use time domain signal and frequency domain signal as the inputs, and the extracted time-domain features and frequency-domain features are fused by linear weighting for classification training. Furthermore, the weight can be learned by the DCNN automatically.ResultsThe experiments based on BCI competition II dataset III and BCI competition IV dataset 2a showed that the model proposed by this study has better performance than other conventional methods. The model used time-frequency signal as the inputs had better performance than the model only used time-domain signals or frequency-domain signals. The accuracy of classification was improved for each subject compared with the models only used one signals as the inputs.ConclusionsFurther analysis shown that the fusion weight of different subject is specifically, adjusting the weight coefficient automatically is helpful to improve the classification accuracy.  相似文献   

11.
Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm—Left-Arm—Right-Hand—Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.  相似文献   

12.
Insects carry a pair of actively movable feelers that supply the animal with a range of multimodal information. The antennae of the stick insect Carausius morosus are straight and of nearly the same length as the legs, making them ideal probes for near-range exploration. Indeed, stick insects, like many other insects, use antennal contact information for the adaptive control of locomotion, for example, in climbing. Moreover, the active exploratory movement pattern of the antennae is context-dependent. The first objective of the present study is to reveal the significance of antennal contact information for the efficient initiation of climbing. This is done by means of kinematic analysis of freely walking animals as they undergo a tactually elicited transition from walking to climbing. The main findings are that fast, tactually elicited re-targeting movements may occur during an ongoing swing movement, and that the height of the last antennal contact prior to leg contact largely predicts the height of the first leg contact. The second objective is to understand the context-dependent adaptation of the antennal movement pattern in response to tactile contact. We show that the cycle frequency of both antennal joints increases after obstacle contact. Furthermore, inter-joint coupling switches distinctly upon tactile contact, revealing a simple mechanism for context-dependent adaptation.  相似文献   

13.
The neurophysiological prerequisites for the development and operation of the brain-computer interfaces (BCI) that allow cerebral electrical signals alone to control external technical devices are considered. A BCI based on the discrimination of the EEG patterns related to imagery of extremity movements is described. The possibility of the rehabilitation of patients with motor disorders by means of the BCI based on motor imagery and the exoskeleton controlled by it is discussed.  相似文献   

14.
Nonnegative tensor factorization for continuous EEG classification   总被引:1,自引:0,他引:1  
In this paper we present a method for continuous EEG classification, where we employ nonnegative tensor factorization (NTF) to determine discriminative spectral features and use the Viterbi algorithm to continuously classify multiple mental tasks. This is an extension of our previous work on the use of nonnegative matrix factorization (NMF) for EEG classification. Numerical experiments with two data sets in BCI competition, confirm the useful behavior of the method for continuous EEG classification.  相似文献   

15.
In the context of brain-computer interface (BCI) system, the common spatial patterns (CSP) method has been used to extract discriminative spatial filters for the classification of electroencephalogram (EEG) signals. However, the classification performance of CSP typically deteriorates when a few training samples are collected from a new BCI user. In this paper, we propose an approach that maintains or improves the recognition accuracy of the system with only a small size of training data set. The proposed approach is formulated by regularizing the classical CSP technique with the strategy of transfer learning. Specifically, we incorporate into the CSP analysis inter-subject information involving the same task, by minimizing the difference between the inter-subject features. Experimental results on two data sets from BCI competitions show that the proposed approach greatly improves the classification performance over that of the conventional CSP method; the transformed variant proved to be successful in almost every case, based on a small number of available training samples.  相似文献   

16.
《IRBM》2020,41(3):141-150
ObjectiveThe main objective of this paper is to propose a novel technique, called filter bank maximum a-posteriori common spatial pattern (FB-MAP-CSP) algorithm, for online classification of multiple motor imagery activities using electroencephalography (EEG) signals. The proposed technique addresses the overfitting issue of CSP in addition to utilizing the spectral information of EEG signals inside the framework of filter banks while extending it to more than two conditions.Materials and methodsThe classification of motor imagery signals is based upon the detection of event-related de-synchronization (ERD) phenomena in the μ and β rhythms of EEG signals. Accordingly, two modifications in the existing MAP-CSP technique are presented: (i) The (pre-processed) EEG signals are spectrally filtered by a bank of filters lying in the μ and β brainwave frequency range, (ii) the framework of MAP-CSP is extended to deal with multiple (more than two) motor imagery tasks classification and the spatial filters thus obtained are calculated for each sub-band, separately. Subsequently, the most imperative features over all sub-bands are selected and un-regularized linear discriminant analysis is employed for classification of multiple motor imagery tasks.ResultsPublicly available dataset (BCI Competition IV Dataset I) is used to validate the proposed method i.e. FB-MAP-CSP. The results show that the proposed method yields superior classification results, in addition to be computationally more efficient in the case of online implementation, as compared to the conventional CSP based techniques and its variants for multiclass motor imagery classification.ConclusionThe proposed FB-MAP-CSP algorithm is found to be a potential / superior method for classifying multi-condition motor imagery EEG signals in comparison to FBCSP based techniques.  相似文献   

17.
《IRBM》2022,43(5):434-446
ObjectiveThe initial principal task of a Brain-Computer Interfacing (BCI) research is to extract the best feature set from a raw EEG (Electroencephalogram) signal so that it can be used for the classification of two or multiple different events. The main goal of the paper is to develop a comparative analysis among different feature extraction techniques and classification algorithms.Materials and methodsIn this present investigation, four different methodologies have been adopted to classify the recorded MI (motor imagery) EEG signal, and their comparative study has been reported. Haar Wavelet Energy (HWE), Band Power, Cross-correlation, and Spectral Entropy (SE) based Cross-correlation feature extraction techniques have been considered to obtain the necessary features set from the raw EEG signals. Four different machine learning algorithms, viz. LDA (Linear Discriminant Analysis), QDA (Quadratic Discriminant Analysis), Naïve Bayes, and Decision Tree, have been used to classify the features.ResultsThe best average classification accuracies are 92.50%, 93.12%, 72.26%, and 98.71% using the four methods. Further, these results have been compared with some recent existing methods.ConclusionThe comparative results indicate a significant accuracy level performance improvement of the proposed methods with respect to the existing one. Hence, this presented work can guide to select the best feature extraction method and the classifier algorithm for MI-based EEG signals.  相似文献   

18.
The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.  相似文献   

19.
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.  相似文献   

20.
As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号