首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extreme learning machine (ELM) is a novel and fast learning method to train single layer feed-forward networks. However due to the demand for larger number of hidden neurons, the prediction speed of ELM is not fast enough. An evolutionary based ELM with differential evolution (DE) has been proposed to reduce the prediction time of original ELM. But it may still get stuck at local optima. In this paper, a novel algorithm hybridizing DE and metaheuristic coral reef optimization (CRO), which is called differential evolution coral reef optimization (DECRO), is proposed to balance the explorative power and exploitive power to reach better performance. The thought and the implement of DECRO algorithm are discussed in this article with detail. DE, CRO and DECRO are applied to ELM training respectively. Experimental results show that DECRO-ELM can reduce the prediction time of original ELM, and obtain better performance for training ELM than both DE and CRO.  相似文献   

2.
Liu Z  Tan M 《Biometrics》2008,64(4):1155-1161
SUMMARY: In medical diagnosis, the diseased and nondiseased classes are usually unbalanced and one class may be more important than the other depending on the diagnosis purpose. Most standard classification methods, however, are designed to maximize the overall accuracy and cannot incorporate different costs to different classes explicitly. In this article, we propose a novel nonparametric method to directly maximize the weighted specificity and sensitivity of the receiver operating characteristic curve. Combining advances in machine learning, optimization theory, and statistics, the proposed method has excellent generalization property and assigns different error costs to different classes explicitly. We present experiments that compare the proposed algorithms with support vector machines and regularized logistic regression using data from a study on HIV-1 protease as well as six public available datasets. Our main conclusion is that the performance of proposed algorithm is significantly better in most cases than the other classifiers tested. Software package in MATLAB is available upon request.  相似文献   

3.
Recently, a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden-layer feedforward neural networks (SLFNs). It was much faster than the traditional gradient-descent-based learning algorithms due to the analytical determination of output weights with the random choice of input weights and hidden layer biases. However, this algorithm often requires a large number of hidden units and thus slowly responds to new observations. Evolutionary extreme learning machine (E-ELM) was proposed to overcome this problem; it used the differential evolution algorithm to select the input weights and hidden layer biases. However, this algorithm required much time for searching optimal parameters with iterative processes and was not suitable for data sets with a large number of input features. In this paper, a new approach for training SLFNs is proposed, in which the input weights and biases of hidden units are determined based on a fast regularized least-squares scheme. Experimental results for many real applications with both small and large number of input features show that our proposed approach can achieve good generalization performance with much more compact networks and extremely high speed for both learning and testing.  相似文献   

4.
Buckley–James (BJ) model is a typical semiparametric accelerated failure time model, which is closely related to the ordinary least squares method and easy to be constructed. However, traditional BJ model built on linearity assumption only captures simple linear relationships, while it has difficulty in processing nonlinear problems. To overcome this difficulty, in this paper, we develop a novel regression model for right-censored survival data within the learning framework of BJ model, basing on random survival forests (RSF), extreme learning machine (ELM), and L2 boosting algorithm. The proposed method, referred to as ELM-based BJ boosting model, employs RSF for covariates imputation first, then develops a new ensemble of ELMs—ELM-based boosting algorithm for regression by ensemble scheme of L2 boosting, and finally, uses the output function of the proposed ELM-based boosting model to replace the linear combination of covariates in BJ model. Due to fitting the logarithm of survival time with covariates by the nonparametric ELM-based boosting method instead of the least square method, the ELM-based BJ boosting model can capture both linear covariate effects and nonlinear covariate effects. In both simulation studies and real data applications, in terms of concordance index and integrated Brier sore, the proposed ELM-based BJ boosting model can outperform traditional BJ model, two kinds of BJ boosting models proposed by Wang et al., RSF, and Cox proportional hazards model.  相似文献   

5.
In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system — the southern power system of Hebei province.  相似文献   

6.
Over the past decade, there has been growing enthusiasm for using electronic medical records (EMRs) for biomedical research. Quantile regression estimates distributional associations, providing unique insights into the intricacies and heterogeneity of the EMR data. However, the widespread nonignorable missing observations in EMR often obscure the true associations and challenge its potential for robust biomedical discoveries. We propose a novel method to estimate the covariate effects in the presence of nonignorable missing responses under quantile regression. This method imposes no parametric specifications on response distributions, which subtly uses implicit distributions induced by the corresponding quantile regression models. We show that the proposed estimator is consistent and asymptotically normal. We also provide an efficient algorithm to obtain the proposed estimate and a randomly weighted bootstrap approach for statistical inferences. Numerical studies, including an empirical analysis of real-world EMR data, are used to assess the proposed method's finite-sample performance compared to existing literature.  相似文献   

7.
In order to identify the lower limb movements accurately and quickly, a recognition method based on extreme learning machine (ELM) is proposed. The recognizing target set is constructed by decomposing the daily actions into different segments. To get the recognition accuracy of seven movements based on the surface electromyography, the recognition feature vector space is established by integrating short-time statistical characteristics under time domain, and locally linear embedding algorithm is used to reduce the computational complexity and improve robustness of algorithm. Compared with BP, the overall recognition accuracy for each subject in the best dimension with ELM is above 95%.  相似文献   

8.
Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random ‘receptive field’ sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.  相似文献   

9.
This paper describes an identification method of a landmark in a roentgenographic cephalogram by employing the input-correlated wavelet neurons. For the purpose of improvement of identification precision, a novel pattern matching method, named "wavelet neuron matching (WNM)," is proposed in this paper. Furthermore, the "weighted window", which is proposed in this paper, enables us to consider the orthodontists' knowledge on local information as precisely as possible. The effectiveness and the validity of the proposed method have been verified by the experiments to identify a landmark called Menton.  相似文献   

10.
To achieve high assessment accuracy for credit risk, a novel multistage deep belief network (DBN) based extreme learning machine (ELM) ensemble learning methodology is proposed. In the proposed methodology, three main stages, i.e., training subsets generation, individual classifiers training and final ensemble output, are involved. In the first stage, bagging sampling algorithm is applied to generate different training subsets for guaranteeing enough training data. Second, the ELM, an effective AI forecasting tool with the unique merits of time-saving and high accuracy, is utilized as the individual classifier, and diverse ensemble members can be accordingly formulated with different subsets and different initial conditions. In the final stage, the individual results are fused into final classification output via the DBN model with sufficient hidden layers, which can effectively capture the valuable information hidden in ensemble members. For illustration and verification, the experimental study on one publicly available credit risk dataset is conducted, and the results show the superiority of the proposed multistage DBN-based ELM ensemble learning paradigm in terms of high classification accuracy.  相似文献   

11.
Yuan Z  Ghosh D 《Biometrics》2008,64(2):431-439
Summary .   In medical research, there is great interest in developing methods for combining biomarkers. We argue that selection of markers should also be considered in the process. Traditional model/variable selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a novel model-combining algorithm for classification in biomarker studies. It works by considering weighted combinations of various logistic regression models; five different weighting schemes are considered in the article. The weights and algorithm are justified using decision theory and risk-bound results. Simulation studies are performed to assess the finite-sample properties of the proposed model-combining method. It is illustrated with an application to data from an immunohistochemical study in prostate cancer.  相似文献   

12.
Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare genetic variants associated with complex diseases and traits. However, the common practice of first calling underlying genotypes and then treating the called values as known is prone to false positive findings, especially when genotyping errors are systematically different between cases and controls. This happens whenever cases and controls are sequenced at different depths, on different platforms, or in different batches. In this article, we provide a likelihood-based approach to testing rare variant associations that directly models sequencing reads without calling genotypes. We consider the (weighted) burden test statistic, which is the (weighted) sum of the score statistic for assessing effects of individual variants on the trait of interest. Because variant locations are unknown, we develop a simple, computationally efficient screening algorithm to estimate the loci that are variants. Because our burden statistic may not have mean zero after screening, we develop a novel bootstrap procedure for assessing the significance of the burden statistic. We demonstrate through extensive simulation studies that the proposed tests are robust to a wide range of differential sequencing qualities between cases and controls, and are at least as powerful as the standard genotype calling approach when the latter controls type I error. An application to the UK10K data reveals novel rare variants in gene BTBD18 associated with childhood onset obesity. The relevant software is freely available.  相似文献   

13.
There has been a rising interest in better exploiting auxiliary summary information from large databases in the analysis of smaller-scale studies that collect more comprehensive patient-level information. The purpose of this paper is twofold: first, we propose a novel approach to synthesize information from both the aggregate summary statistics and the individual-level data in censored linear regression. We show that the auxiliary information amounts to a system of nonsmooth estimating equations and thus can be combined with the conventional weighted log-rank estimating equations by using the generalized method of moments (GMM) approach. The proposed methodology can be further extended to account for the potential inconsistency in information from different sources. Second, in the absence of auxiliary information, we propose to improve estimation efficiency by combining the overidentified weighted log-rank estimating equations with different weight functions via the GMM framework. To deal with the nonsmooth GMM-type objective functions, we develop an asymptotics-guided algorithm for parameter and variance estimation. We establish the asymptotic normality of the proposed GMM-type estimators. Simulation studies show that the proposed estimators can yield substantial efficiency gain over the conventional weighted log-rank estimators. The proposed methods are applied to a pancreatic cancer study for illustration.  相似文献   

14.
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.  相似文献   

15.
This article investigates an augmented inverse selection probability weighted estimator for Cox regression parameter estimation when covariate variables are incomplete. This estimator extends the Horvitz and Thompson (1952, Journal of the American Statistical Association 47, 663-685) weighted estimator. This estimator is doubly robust because it is consistent as long as either the selection probability model or the joint distribution of covariates is correctly specified. The augmentation term of the estimating equation depends on the baseline cumulative hazard and on a conditional distribution that can be implemented by using an EM-type algorithm. This method is compared with some previously proposed estimators via simulation studies. The method is applied to a real example.  相似文献   

16.
Bondell HD  Reich BJ 《Biometrics》2008,64(1):115-123
Summary .   Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In this article, a new method called the OSCAR (octagonal shrinkage and clustering algorithm for regression) is proposed to simultaneously select variables while grouping them into predictive clusters. In addition to improving prediction accuracy and interpretation, these resulting groups can then be investigated further to discover what contributes to the group having a similar behavior. The technique is based on penalized least squares with a geometrically intuitive penalty function that shrinks some coefficients to exactly zero. Additionally, this penalty yields exact equality of some coefficients, encouraging correlated predictors that have a similar effect on the response to form predictive clusters represented by a single coefficient. The proposed procedure is shown to compare favorably to the existing shrinkage and variable selection techniques in terms of both prediction error and model complexity, while yielding the additional grouping information.  相似文献   

17.
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time.  相似文献   

18.
An adaptive multivariate test is proposed for a subset of regression coefficients in a linear model. This adaptive method uses the studentized deleted residuals to calculate an appropriate weight for each observation. The weights are then used to compute Wilk's lambda for the weighted model. The adaptive test is performed by permuting the independent variables corresponding to those parameters that are assumed to equal zero in the null hypothesis. The permuted variables are then weighted to obtain a permutation test statistic that is used to estimate the p-value. An example is presented of a multivariate regression that uses systolic and diastolic blood pressure as dependent variables with age and body mass index as independent variables. The simulation results show that the adaptive test maintains its size for the three multivariate error distributions that were used in the study. For normal error models the power of the adaptive test nearly equaled that of the non-adaptive test. For models that used non-normal errors the adaptive test was considerably more powerful than the traditional non-adaptive test.  相似文献   

19.
An improved algorithm for clustering gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Recent advancements in microarray technology allows simultaneous monitoring of the expression levels of a large number of genes over different time points. Clustering is an important tool for analyzing such microarray data, typical properties of which are its inherent uncertainty, noise and imprecision. In this article, a two-stage clustering algorithm, which employs a recently proposed variable string length genetic scheme and a multiobjective genetic clustering algorithm, is proposed. It is based on the novel concept of points having significant membership to multiple classes. An iterated version of the well-known Fuzzy C-Means is also utilized for clustering. RESULTS: The significant superiority of the proposed two-stage clustering algorithm as compared to the average linkage method, Self Organizing Map (SOM) and a recently developed weighted Chinese restaurant-based clustering method (CRC), widely used methods for clustering gene expression data, is established on a variety of artificial and publicly available real life data sets. The biological relevance of the clustering solutions are also analyzed.  相似文献   

20.
《IRBM》2022,43(1):49-61
Background and objectiveBreast cancer, the most intrusive form of cancer affecting women globally. Next to lung cancer, breast cancer is the one that provides a greater number of cancer deaths among women. In recent times, several intelligent methodologies were come into existence for building an effective detection and classification of such noxious type of cancer. For further improving the rate of early diagnosis and for increasing the life span of victims, optimistic light of research is essential in breast cancer classification. Accordingly, a new customized method of integrating the concept of deep learning with the extreme learning machine (ELM), which is optimized using a simple crow-search algorithm (ICS-ELM). Thus, to enhance the state-of-the-art workings, an improved deep feature-based crow-search optimized extreme learning machine is proposed for addressing the health-care problem. The paper pours a light-of-research on detecting the input mammograms as either normal or abnormal. Subsequently, it focuses on further classifying the type of abnormal severities i.e., benign type or malignant.Materials and methodsThe digital mammograms for this work are taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM), Mammographic Image Analysis Society (MIAS), and INbreast datasets. Herein, the work employs 570 digital mammograms (250 normal, 200 benign and 120 malignant cases) from CBIS-DDSM dataset, 322 digital mammograms (207 normal, 64 benign and 51 malignant cases) from MIAS database and 179 full-field digital mammograms (66 normal, 56 benign and 57 malignant cases) from INbreast dataset for its evaluation. The work utilizes ResNet-18 based deep extracted features with proposed Improved Crow-Search Optimized Extreme Learning Machine (ICS-ELM) algorithm.ResultsThe proposed work is finally compared with the existing Support Vector Machines (RBF kernel), ELM, particle swarm optimization (PSO) optimized ELM, and crow-search optimized ELM, where the maximum overall classification accuracy is obtained for the proposed method with 97.193% for DDSM, 98.137% for MIAS and 98.266% for INbreast datasets, respectively.ConclusionThe obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the automatic detection and classification of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号