共查询到20条相似文献,搜索用时 15 毫秒
2.
Summary Mutants altered in carbon catabolite regulation have been isolated by selecting for mutants of the areA217 strain capable of using acetamide as the sole nitrogen source in the presence of sucrose. In addition to creA mutants described previously by Arst and Cove, strains with mutations in two new genes, creB and creC, have been found. The creB and creC mutants grow poorly on some sole carbon sources and have low levels of some enzymes of carbon catabolism e.g. -galactosidase and D-quinate dehydrogenase. The creB and creC mutants are hypersitive to fluoroacetate, fluoroacetamide and allyl alcohol in the presence of glucose or sucrose but not glycerol; and the enzymes, acetamidase, and alcohol dehydrogenase, are less sensitive to carbon catabolite repression than the wild-type strain. Extracellular protease and -glucosidase enzyme activities are elevated in creB and creC mutants, while L-proline and L-glutamate uptake capacities are lower in both the presence and absence of glucose. Interactions between creA, B and C mutations have been investigated in double mutants, and the dominance properties of creB and creC mutants determined. The results indicate that the creB and creC genes may have a regulatory role in the control of carbon catabolism. 相似文献
4.
Summary Specitinomycin-resistant mutants of Bacillus subtilis show three different types of alterations in sporulation ability. Class 1 mutants can both grow and sporulate in the presence of spectinomycin. Class 2 mutants can grow in the presence of spectinomycin, but are unable to sporulate in either the presence or absence of spectinomycin. Class 3 mutants have a conditional phenotype, and are able to sporulate in the absence of spectinomycin, but not in its presence. The ability of these strains to produce alkaline phosphatase, a biochemical marker for early sporulation events, is correlated with the ability to sporulate in the presence or absence of antibiotic. All of the spectinomycin-resistance mutations could be genetically linked to the cysA marker, and a mutational alteration of a protein of the 30S ribosomal subunit has been identified in one of the Class 3 strains (Spc1–11). Fine-structure mapping of the spectinomycin resistance mutation of strain Spc 1–11 confirmed its location in the cluster of genes for ribosomal components on the B. subtilis genetic map. Genetic analysis indicated that the properties of the Class 1 and Class 2 mutants result from more than one mutation. The spectinomycin-resistance and altered sporulation properties of the two Class 3 mutants probably result from a single genetic lesion. 相似文献
5.
A method was developed to screen bacteria for synthesis of mutant proteins with altered assembly and solubility properties using bacteriophage MS2 coat protein as a model self-associating protein. Colonies expressing coat protein from a plasmid were covered with an agarose overlay under conditions that caused the lysis of some of the cells in each colony. The proteins thus liberated diffused through the overlay at rates depending on their molecular sizes. After transfer of the proteins to a nitrocellulose membrane, probing with coat protein-specific antiserum revealed spots whose sizes and intensities were related to the aggregation state of coat protein. The method was employed in the isolation of assembly defective mutants and to find soluble variants of an aggregation-prone coat protein mutant. 相似文献
6.
The LamB protein is normally required for the uptake of maltodextrins. Starting with a LamB- OmpF- strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex+ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB- OmpF- strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of [14C]maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain beta-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size. 相似文献
7.
Cytochromes b, c, d, and o were identified by spectroscopic analysis of respiratory membrane fragments from Vitreoscilla sp., strain C1. Carbon monoxide difference spectra of the reduced membranes had absorption maxima at 416, 534, and 571 nm (ascribed to cytochrome o) and 632 nm (cytochrome d). Derivative spectra of the pyridine hemochromogen spectra of the membranes identified the presence of b- and c-type cytochromes in Vitreoscilla. The cyanide binding curve of the membranes was biphasic with dissociation constants of 2.14 mM and 10.7 mM which were assigned to cytochrome o and cytochrome d, respectively. Membranes bound carbon monoxide with dissociation constant 3.9 M, which was assigned to cytochrome o. Cytochrome c
556 and a NADH-p-iodonitrotetrazolium violet reductase component were partially purified from Vitreoscilla membranes.Abbreviations INT
p-iodonitrotetrazolium violet
- RMF
respiratory membrane fragments
-
K
d
dissociation constant
- CHAPS
3-[(3-cholamido propyl) dimethylammonio]-1-propanesulfonate
- DOC
sodium deoxycholate
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate 相似文献
8.
The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. 相似文献
9.
The synthesis of the H2 uptake system in free-living Rhizobium japonicum SR is repressed both by oxygen and by carbon substrates. Mutants selected for the ability to express hydrogenase in 10.0% partial pressure O2 were also less sensitive than the wild type to repression by carbon substrates such as arabinose, glycerol, gluconate, and succinate. The H2 uptake system in another class of mutants, previously shown to be hypersensitive to repression by O2, is also more sensitive to repression by carbon substrates. The oxygen- and carbon-insensitive mutants express the hydrogen uptake system during heterotrophic growth in the absence of hydrogen and thus can be considered constitutive (Hupc). The amount of cytochromes in the Hupc mutants is similar to that in the wild-type strain; however, the Hupc mutants contain greater methylene blue-dependent and O2-dependent hydrogenase activity, both as free-living cells and as bacteroids. Two-dimensional polyacrylamide gel electrophoresis revealed that during heterotrophic growth the Hupc mutant strain SR470 synthesized at least six peptides not found in the wild-type strain. The concentrations of cyclic AMP and guanosine tetraphosphate were similar in strain SR and the Hupc mutants during heterotrophic growth. 相似文献
11.
During entry into host cells, poliovirus undergoes a receptor-mediated conformational transition to form 135S particles with irreversible exposure of VP4 capsid sequences and VP1 N termini. To understand the role of VP4 during virus entry, the fate of VP4 during infection by site-specific mutants at threonine-28 of VP4 (4028T) was compared with that of the parental Mahoney type 1 virus. Three virus mutants were studied: the entry-defective, nonviable mutant 4028T.G and the viable mutants 4028T.S and 4028T.V, in which residue threonine-28 was changed to glycine, serine, and valine, respectively. We show that mutant and wild-type (WT) VP4 proteins are localized to cellular membranes after the 135S conformational transition. Both WT and viable 4028T mutant particles interact with lipid bilayers to form ion channels, whereas the entry-defective 4028T.G particles do not. In addition, the electrical properties of the channels induced by the mutant viruses are different from each other and from those of WT Mahoney and Sabin type 3 viruses. Finally, uncoating and/or cytoplasmic delivery of the viral genome is altered in the 4028T mutants: the 4028T.G lethal mutant does not release its genome into the cytoplasm, and genome delivery is slower during infection by mutant 4028T.V 135S particles than by mutant 4028T.S or WT 135S particles. The distinctive electrical characteristics of the different 4028T mutant channels indicate that VP4 sequences might form part of the channel structure. The different entry phenotypes of these VP4 mutants suggest that the ion channels may be related to VP4's role during genome uncoating and/or delivery. 相似文献
12.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other. 相似文献
13.
The arabinose-binding protein (ABP) of Escherichia coli binds L-arabinose in the periplasm and delivers it to a cytoplasmic membrane complex consisting of the AraG and AraH proteins, for uptake into the cell. To study the interaction between the soluble and membrane components of this periplasmic transport system, regions of the ABP surface containing the opening of the arabinose-binding cleft were subjected to site-directed mutagenesis. Thirty-eight ABP variants containing one to three amino acid substitutions were recovered. ABP variants were expressed with wild-type AraG and AraH from a plasmid, in a strain lacking the chromosomal araFGH operon, and the whole cell uptake parameters, Ven (maximum initial velocity of arabinose entry) and K(en) (concentration of arabinose yielding half-maximal entry) were determined. Twenty-four mutants had normal Ven values, 3 mutants had Ven and K(en) values twice wild type, and 11 mutants had Ven and K(en) values 20-50% of wild type. Binding proteins that had altered uptake properties were each expressed, processed, and localized to the periplasm at levels equivalent to wild type. The mutant binding proteins behaved the same as wild type during purification, and each had a Kd (dissociation constant for bound arabinose) comparable to that of wild-type ABP. Mutations that resulted in altered uptake identified nine amino acids surrounding the arabinose-binding cleft, all of which are charged in the wild-type protein, and all of whose side chains project outward from the cleft. The evidence suggests that this surface of the binding protein and these nine charged loci play a major role in ABP interactions with the membrane complex. 相似文献
14.
We report the identification and characterization of eight yeast mitochondrial tRNA mutants, located in mitochondrial tRNA(Gln), tRNA(Arg2), tRNA(Ile), tRNA(His), and tRNA(Cys), the respiratory phenotypes of which exhibit various degrees of deficiency. The mutations consist in single-base substitutions, insertions, or deletions, and are distributed all over the tRNA sequence and structure. To identify the features responsible for the defective phenotypes, we analyzed the effect of the different mutations on the electrophoretic mobility and efficiency of acylation of the mutated tRNAs in comparison with the respective wild-type molecules. Five of the studied mutations determine both conformational changes and defective acylation, while two have neither or limited effect. However, variations in structure and acylation are not necessarily correlated; the remaining mutation affects the tRNA conformation, but not its acylation properties. Analysis of tRNA structures and of mitochondrial and cytoplasmic yeast tRNA sequences allowed us to propose explanations for the observed defects, which can be ascribed to either the loss of identity nucleotides or, more often, of specific secondary and/or tertiary interactions that are largely conserved in native mitochondrial and cytoplasmic tRNAs. 相似文献
15.
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible. 相似文献
16.
A method for qualitative determination of cytochromes of the wild-type and mutant strains of Chalmydomonas reinhardii was developed. The effect of different techniques of cell disruption (ultrasound, Triton X-100, acetone, etc) on detection of cytochrome maxima in the oxidized minus reduced difference spectra was studied on a comparative basis. The development of the stable difference spectrum of the disrupted cell suspension was shown to be a function of incubation time in the presence of an oxidizing or a reducing agent. Cytochromes of the wild-type and 10 nonphotosynthesizing mutants were determined. Four mutants with lesions in cytochromes B559 and C553 were detected. Mutants with lesions in the reaction center of photosystem 2 were found to have a substantially reduced content of cytochrome B559, whereas those with normal photosystems--of cytochrome C553. 相似文献
18.
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+ a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls. The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent. Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane. Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature. The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria. 相似文献
19.
The electron transport system present in the photosynthetic apparatus and respiratory chain were evolutionary acquisitions that allowed the organisms to convert electromagnetic energy in chemical energy and thus improve the use of energy fuels. These systems acquired by prokaryotes were preserved in the highly complex organisms always with the participation of the cytochromes. Since the discovery of the cytochromes, and the isolation and association of these proteins to model membranes, the liposomes, have been used to investigative strategies to characterize the structure and function of these proteins. From these studies important findings have contributed to the comprehension of the energy transduction mechanisms and the role played by the nonredox subunits present in the protein complexes of the respiratory chain of eukaryotes. 相似文献
20.
Random mutagenesis is an approach that has the potential to provide useful information about cytochrome P450 (P450) enzymes but has not been extensively used to date. We applied our previously developed systems for generation of random libraries of human P450 1A2 with the putative substrate recognition sequences mutated (individual residues) and an Escherichia coli genotoxity assay involving reversion to lac prototrophy as a response to activation of the heterocyclic amine 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ). A total of 27 mutants were screened from 6000 clones, a small portion of the library. The sequence changes were identified, and E. coli membranes containing each P450 (with NADPH-P450 reductase expressed using a bicistronic vector) were used to determine kcat and Km values for 7-ethoxyresorufin and phenacetin O-deethylation and the (in vitro) activation of MeIQ with another bacterial genotoxicity system (Salmonella typhimurium umu). Within each assay, the values of kcat/Km varied by 2 orders of magnitude, and in some cases these parameters were 3-4-fold higher than for the native enzyme. The profiles of the mutants varied considerably for the three different reactions. Some of the mutants in the Asp-320 region may be compared with site-directed mutants of rat P450 1A2 already reported, with several differences noted. Other mutants have not been studied before in human P450 1A2 or homologues and are of interest; i.e., all Phe-226 mutants showed considerably reduced activity but Glu-225 mutants had increased catalytic activities. In principle, this approach may be applied to random mutagenesis of any enzyme that converts chemicals to mutagens and can be expressed in bacteria. 相似文献
|