首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination of two fragments of horse cytochrome c (the heme-containing N-fragment, residues 1-56, and the C-fragment, residues 57-104), which are substantially unstructured at neutral pH, gives rise to a 1:1 fragment complex with a compact conformation, in which the alpha helical structure and the native Met80-Fe(III) axial bond are recovered. With respect to the native protein, the ferric complex shows a less rigid atomic packing and a decreased stability [Delta(DeltaG(o))D = 14.7 kJ.mol(-1)], ascribed to perturbations involving the Trp59 microenvironment and, to a lower extent, the heme pocket region. The redox potential, E1/2 = 234 +/- 5 mV vs. normal hydrogen electrode at 25 degrees C, is close to that of the intact protein, consistent with recovery of the native Met80-heme Fe(III) axial bond. Furthermore, the fragment complex shows reactivity similar to intact cytochrome c, in the reaction with cytochrome c oxidase. We conclude that the absence in the complex of some native cross-links and interlocked packing important for protein rigidity and stability is not as relevant for maintaining the native redox properties of the protein, provided that some structural requirements (i.e. recovering of the native-like alpha helical structure) are fulfilled and coordination of Met80 to the heme-iron is restored.  相似文献   

2.
L L Xue  Y H Wang  Y Xie  P Yao  W H Wang  W Qian  Z X Huang  J Wu  Z X Xia 《Biochemistry》1999,38(37):11961-11972
To elucidate the role played by Val61 of cytochrome b(5), this residue of the tryptic fragment of bovine liver cytochrome b(5) was chosen for replacement with tyrosine (Val61Tyr), histidine (Val61His), glutamic acid (Val61Glu), and lysine (Val61Lys) by means of site-directed mutagenesis. The mutants Val61Tyr, Val61Glu, Val61His, and Val61Lys exhibit electronic spectra identical to that of the wild type, suggesting that mutation at Val61 did not affect the overall protein structure significantly. The redox potentials determined by differential pulse voltammetry were -10 (wild type), -25 (Val61Glu), -33 (Val61Tyr), 12 (Val61His), and 17 mV (Val61Lys) versus NHE. The thermal stabilities and urea-mediated denaturation of wild-type cytochrome b(5) and its mutants were in the following order: wild type > Val61Glu > Val61Tyr > Val61His > Val61Lys. The kinetics of denaturation of cytochrome b(5) by urea was also analyzed. The first-order rate constants of heme transfer between cytochrome b(5) and apomyoglobin at 20 +/- 0.2 degrees C were 0.25 +/- 0.01 (wild type), 0.42 +/- 0.02 (Val61Tyr), 0.93 +/- 0.04 (Val61Glu), 2.88 +/- 0.01 (Val61His), and 3.88 +/- 0.02 h(-)(1) (Val61Lys). The crystal structure of Val61His was determined using the molecular replacement method and refined at 2.1 A resolution, showing that the imidazole side chain of His61 points away from the heme-binding pocket and extends into the solvent, the coordination distances from Fe to NE2 atoms of two axial ligands are approximately 0.6 A longer than the reported value, and the hydrogen bond network involving Val61, the heme propionates, and three water molecules no longer exists. We conclude that the conserved residue Val61 is located at one of the key positions, the "electrostatic potential" around the heme-exposed area and the hydrophobicity of the heme pocket are determinant factors modulating the redox potential of cytochrome b(5), and the hydrogen bond network around the exposed heme edge is also an important factor affecting the heme stability.  相似文献   

3.
We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.  相似文献   

4.
A new purification protocol for cytochrome c550 (cyt c550) from His-tagged SYnechocYstis PCC 6803 photosystem II (PSII) was developed which allows the protein to be isolated in high yield and purity. Electron paramagnetic resonance spectroscopy of cyt c550, both free in solution and in intact PSII preparations, yields identical spectra with g values at 1.50, 2.23, and 2.87, which are characteristic for a ferric low-spin bis-histidine coordinated heme. The resonance Raman spectrum of the isolated protein exhibits features characteristic of bis-histidine axial ligation of the iron and a slight ruffling of the heme macrocycle. Together, these results indicate that the heme structure is not very different from most c-type cytochromes, and thus the structure of the heme does not account for its unusually low reduction potential. A direct electrochemical measurement of the reduction potential was performed using square wave voltammetry on a pyrolytic graphite edge electrode, yielding E1.2=-108 mV (vs. NHE) with a peak separation of 5 mV. This value is 150 mV more positive than that previously measured by redox titrations. Because the behavior of the protein in the electrochemistry experiments is indicative of adsorption to the electrode surface, we surmise that binding of the protein to the electrode excludes solvent water from the heme-binding site. We conclude that the degree of solvent exposure makes a significant contribution to the heme reduction potential. Similarly, the binding of cyt c550 to PSII may also reduce the solvent exposure of the heme, and so the direct electrochemical value of the reduction potential may be relevant to the protein in its native state.  相似文献   

5.
Compared with algal and cyanobacterial cytochrome c(6), cytochrome c(6A) from higher plants contains an additional loop of 12 amino acid residues. We have determined the first crystal structure of cytochrome c(6A) from Arabidopsis thaliana at 1.5 Angstrom resolution in order to help elucidate its function. The overall structure of cytochrome c(6A) follows the topology of class I c-type cytochromes in which the heme prosthetic group covalently binds to Cys16 and Cys19, and the iron has octahedral coordination with His20 and Met60 as the axial ligands. Two cysteine residues (Cys67 and Cys73) within the characteristic 12 amino acids loop form a disulfide bond, contributing to the structural stability of cytochrome c(6A). Our model provides a chemical basis for the known low redox potential of cytochrome c(6A) which makes it an unsuitable electron carrier between cytochrome b(6)f and PSI.  相似文献   

6.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

7.
The heme ligation in the isolated c domain of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase has been characterized in both oxidation states in solution by NMR spectroscopy. In the reduced form, the heme ligands are His69-Met106, and the tertiary structure around the c heme is similar to that found in reduced crystals of intact cytochrome cd1 nitrite reductase. In the oxidized state, however, the structure of the isolated c domain is different from the structure seen in oxidized crystals of intact cytochrome cd1, where the c heme ligands are His69-His17. An equilibrium mixture of heme ligands is present in isolated oxidized c domain. Two-dimensional exchange NMR spectroscopy shows that the dominant species has His69-Met106 ligation, similar to reduced c domains. This form is in equilibrium with a high-spin form in which Met106 has left the heme iron. Melting studies show that the midpoint of unfolding of the isolated c domain is 320.9 +/- 1.2 K in the oxidized and 357.7 +/- 0.6 K in the reduced form. The thermally denatured forms are high-spin in both oxidation states. The results reveal how redox changes modulate conformational plasticity around the c heme and show the first key steps in the mechanism that lead to ligand switching in the holoenzyme. This process is not solely a function of the properties of the c domain. The role of the d1 heme in guiding His17 to the c heme in the oxidized holoenzyme is discussed.  相似文献   

8.
The interaction of cytochrome c with micelles of sodium dodecyl sulfate was studied by proton NMR spectroscopy. The protein/micelles ratio was found to be crucial in controlling the extent of the conformational changes in the heme crevice. Over a range of ratios between 1:30 and 1:60, the NMR spectra of the ferric form display no paramagnetic signals due to a moderately fast exchange between intermediate species on the NMR time scale. This is consistent with an interconversion of bis-histidine derivatives (His18-Fe-His26 and His18-Fe-His33). Further addition of micelles induces a high-spin species that is proposed to involve pentacoordinated iron. The resulting free binding site, also encountered in the ferrous form, is used to complex exogenous ligands such as cyanide or carbon monoxide. Attribution of the heme methyls was performed by means of exchange spectroscopy through ligand exchange or electron transfer. The heme methyl shift pattern of the micellar cyanocytochrome in the ferric low spin form is different from the pattern of both the native and the cyanide cytochrome c adduct, in the absence of micelles, reflecting a complete change of the heme electronic structure. Analysis of the electron self-exchange reaction between the two redox states of the micellar cyanocytochrome c yields a rate constant of 2.4 x 10(4) M(-1) s(-1) at 298 K, which is surprisingly close to the value observed in the native protein.  相似文献   

9.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

10.
In several classes of proteins the redox center provides an additional intrinsic biophysical probe that could be used to study the protein structure and function. In present report reorganization energy (lambda, as a parameter describing electron transfer properties) was used to study the protein structural changes around the heme prosthetic group in cytochrome c (cyt c). We attempted to monitor the value of this parameter upon the unfolding process of cyt c by urea, during which it was increased sigmoidally from about 0.52 to 0.82 eV for native and unfold protein, respectively. Results indicate that by structural changes in the heme site, lambda provides a complementary tool for following the unfolding process. Assuming a reversible two-state model for cyt c unfolding, Delta G(H2O), Cm and m values were determined to be 8.32+/-0.7 kcal mol(-1), 1.53+/-0.19 kcalmol(-1)M(-1) and 5.03 M, respectively.  相似文献   

11.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

12.
Cytochrome c3 from Desulfovibrio gigas is electrostatically adsorbed on Ag electrodes coated with self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid. The redox equilibria and electron transfer dynamics of the adsorbed four-heme protein are studied by surface enhanced resonance Raman spectroscopy. Immobilization on the coated electrodes does not cause any structural changes in the redox sites. The potential-dependent stationary experiments distinguish the redox potential of heme IV (-0.19 V versus normal hydrogen electrode) from those of the other hemes for which an average value of -0.3 V is determined. Taking into account the interfacial potential drops, these values are in good agreement with the redox potentials of the protein in solution. The heterogenous electron transfer between the electrode and heme IV of the adsorbed cytochrome c3 is analyzed on the basis of time-resolved experiments, leading to a formal electron transfer rate constant of 15 s(-1), which is a factor of 3 smaller than that of the monoheme protein cytochrome c.  相似文献   

13.
Complex formation between horse heart ferricytochrome c and large three-dimensional polyanions has been investigated, in order to study the influence of surface electrostatic interactions on the structural and redox properties of cytochrome c. Cytochrome c binds the large heteropolytungstates (NaSb9W21O86)18- and (KAs4W40O140)27- with a 1/1 polyanion/cytochrome c ratio, and the smaller ion (SiW11O39)8- with a 2/1 ratio. Upon complexation, cytochrome c undergoes structural changes that are dependent on the size and charge of the polyanion, and on the pH and ionic strength of the medium. Three different forms of complexed cytochrome c have been characterized by optical and EPR spectroscopies, in the pH range 6.5-8: an N form, close to the native structure, an A form, analogous to cytochrome c in acidic medium, and a novel B form in which the heme pocket is open but the iron remains low-spin. The redox potential of cytochrome c is lowered to 250-220 mV (vs. NHE) in the N form, and to 80 mV in the B form.  相似文献   

14.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   

15.
Larson JW  Wraight CA 《Biochemistry》2000,39(48):14822-14830
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction.  相似文献   

16.
Two multihemic cytochromes c from the sulfur reducing bacteria Desulfuromonas acetoxidans have been studied by optical and resonance Raman spectroscopy: cytochrome c551.5, a trihemic cytochrome and cytochrome c Mr 50 000, a recently isolated high molecular mass cytochrome. The redox and Raman characteristics of cytochrome c551.5 are compared to those of the tetrahemic cytochromes c3 from Desulfovibrio. While the redox behavior, followed by spectroelectrochemistry, is similar to that of cytochrome c3, showing the same conformational change after reduction of the highest potential heme, the Raman data show a contribution from a His- form of the axial ligands and lead to the assignment of a band at 218 cm-1 to the Fe(III)-(His)2 stretching vibration. The Raman data on cytochrome c Mr 50 000 are in favor of an entirely low spin species with two different sets of axial ligands. A partially reduced state is easily accessible by ascorbate addition.  相似文献   

17.
Zinc-substituted cytochrome c has been widely used in studies of protein-protein interactions and photo-induced electron transfer reactions between proteins. However, the coordination geometry of zinc in zinc-substituted cyt c has not yet been determined; two different opinions about the coordination have been reached. Here the solution structures of zinc-substituted cytochrome c that might be five-coordinated and six-coordinated have been refined separately by using (1)H NMR spectroscopy, and the zinc coordination geometry was determined just by NOE distance constraints. Structural analysis of the energy-minimized average solution structures of both the pentacoordinated and hexacoordinated geometries indicate that that zinc in zinc-substituted cyt c should be bound to both His18 and Met80, which means that the zinc is six-coordinated. RMSD values of the family of 25 six-coordinated structures from the average structure are 0.66+/-0.13 A and 1.09+/-0.16 A for the backbone and all heavy atoms, respectively. A statistical analysis of the structure indicates its satisfactory quality. Comparison of the solution structure of the six-coordinated energy-minimized average structure of zinc-substituted cytochrome c with the solution structure of reduced cytochrome c reveals that for the overall folding the secondary structure elements are very close. The availability of the structure provides for a better understanding of the protein-protein complex and for electron transfer processes between Zn cyt c and other metalloproteins.  相似文献   

18.
The crystal structure and spectroscopic properties of the periplasmic penta-heme cytochrome c nitrite reductase (NrfA) of Escherichia coli are presented. The structure is the first for a member of the NrfA subgroup that utilize a soluble penta-heme cytochrome, NrfB, as a redox partner. Comparison to the structures of Wolinella succinogenes NrfA and Sulfospirillum deleyianum NrfA, which accept electrons from a membrane-anchored tetra-heme cytochrome (NrfH), reveals notable differences in the protein surface around heme 2, which may be the docking site for the redox partner. The structure shows that four of the NrfA hemes (hemes 2-5) have bis-histidine axial heme-Fe ligation. The catalytic heme-Fe (heme 1) has a lysine distal ligand and an oxygen atom proximal ligand. Analysis of NrfA in solution by magnetic circular dichroism (MCD) suggested that the oxygen ligand arose from water. Electron paramagnetic resonance (EPR) spectra were collected from electrochemically poised NrfA samples. Broad perpendicular mode signals at g similar 10.8 and 3.5, characteristic of weakly spin-coupled S = 5/2, S = 1/2 paramagnets, titrated with E(m) = -107 mV. A possible origin for these are the active site Lys-OH(2) coordinated heme (heme 1) and a nearby bis-His coordinated heme (heme 3). A rhombic heme Fe(III) EPR signal at g(z) = 2.91, g(y) = 2.3, g(x) = 1.5 titrated with E(m) = -37 mV and is likely to arise from bis-His coordinated heme (heme 2) in which the interplanar angle of the imidazole rings is 21.2. The final two bis-His coordinated hemes (hemes 4 and 5) have imidazole interplanar angles of 64.4 and 71.8. Either, or both, of these hemes could give rise to a "Large g max" EPR signal at g(z)() = 3.17 that titrated at potentials between -250 and -400 mV. Previous spectroscopic studies on NrfA from a number of bacterial species are considered in the light of the structure-based spectro-potentiometric analysis presented for the E. coli NrfA.  相似文献   

19.
Two-dimensional 1H NMR spectroscopy is used to examine the structure and mobility of cytochrome b5 in solution. The assignment of many residues and the interpretation of nuclear Overhauser effects (NOEs) in both redox states allow definition of secondary structural elements. Comparison with X-ray diffraction data shows that differences between crystal and solution structures are small. The dynamics of the protein are examined and the protein is shown to be more mobile than cytochrome c. The relationship of the structure and dynamics to the electron transfer function of cytochrome b5 is discussed.  相似文献   

20.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号