首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasounds are emitted by developing rodents, and changes withage in several parameters of vocalization have been reportedfor numerous myomorphs. In this paper I integrate with ultrasonicvocalization several behaviors which change during development.Included are studies controlling stimulation by olfactory, thermal,and tactile cues as well as detailed studies of specific responsessuch as movement, suckling, grooming, and huddling. Developmentis analyzed in well-known species, such as the rat (Rattus norvegicus),and in less familiar species, especially the pine vole (Microtuspinetorum). Lacking the capacity for physiological thermoregulation, altricialrodent pups with their mother use several behavioral strategieswhich facilitate thermoregulation. Inside the nest, pups adjustthe temperature by changing their huddling. The mother regulatesthe length of suckling bouts according to her body temperature.When a pup is removed from the warm nest, vocalizations of thepup can increase the likelihood of retrieval by the mother andthereby indirectly facilitate thermoregulation. In several species which have been studied, vocalization ratesare highest when pups begin to move into and out of nests andexhibit olfactory-directed movement. As olfactory preferencesbecome established and movement is coordinated, a decline invocalization appears in rat, mouse, hamster, spiny mouse, andpine vole. In the gerbil, however, the decline precedes competencein olfactory-directed movement. In the presence of home shavings, young rats emit low ratesof vocalization, while pine vole young emit calls at a highrate. This contrast may relate to the intensive attachment ofyoung pine voles to the mother in early life.  相似文献   

2.
The rabbit is particularly suitable for investigating the development of mammalian circadian function. Blind at birth, the pups are only visited by the mother to be nursed once every 24 h for about 3 min and so can be studied largely without maternal interference. They anticipate the mother's visit with increased behavioral arousal and with a rise in body temperature, both of which represent endogenous circadian rhythms. We now report that in newborn pups the suprachiasmatic nuclei of the hypothalamus (SCN; the main circadian pacemaker in mammals) show endogenous 24‐h rhythmicity in the expression of the clock genes Per1, Per2, and Bmal1. Pups nursed from postnatal days 1 to 7 and fasted to day 9 showed the same rhythms of clock gene expression as normally nursed controls. We also report that these rhythms are entrained by nursing. Pups killed on postnatal days 3–4 showed the same rhythms in gene expression as pups in the previous experiment, whereas littermates subsequently nursed from postnatal days 4 to 7 with nursing delayed 6 h showed a corresponding shift in the diurnal pattern of clock gene expression. Consistent with this, two groups of pups implanted with telemetric thermal sensors and nursed 6 h apart had daily patterns in body temperature synchronized with the two different nursing times. We conclude that the expression of clock genes associated with the newborn rabbit's circadian system is entrained by nonphotic cues accompanying nursing, the exact nature of which now needs to be clarified. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

3.
Torpor-like circadian variations of core temperature are well documented for suckling-age Zucker rat pups. To determine (1) whether this juvenile circadian rhythm is as strongly expressed in other rat strains, and (2) whether a similar rhythm is expressed in rabbit pups, we recorded core temperature and metabolic rate of artificially reared pups. Wistar, Brown Norway, and Long Evans pups were studied for 30 h under moderate cold loads (ambient temperature=28°C) when 9–11 days old, i.e. at the age and ambient temperature for which the rhythm has been most thoroughly characterized in Zucker rats. Chinchilla bastard rabbit pups were studied under similar conditions when they were 3–8 days old, the youngest age at which the rhythm can be easily detected in rats. Rat pups of each strain showed clear circadian rhythms with sharp decreases of core temperature and metabolic rate in subjective morning. Core temperature amplitudes were in the order Wistar < Brown Norway < Zucker < Long Evans strain. In contrast, the rabbit pups maintained stable high levels of core temperature and metabolic rate throughout the day. A torpor-like decrease of core temperature in the morning is thus not a pecularity of the Zucker rat strain but also occurs in other pigmented rat strains, whereas rabbit pups at a similar developmental stage do not show a circadian core temperature rhythm.  相似文献   

4.
Huddling is considered as a social strategy to reduce thermal stress and promote growth in newborn altricial mammals. So far, the role of huddling on the allocation of saved energy has not been quantified nor have the related impacts on body temperature rhythms. To determine the energy partitioning of rabbit pups either raised alone or in groups of eight, four, or two individuals, when thermoregulatory inefficient (TI) and efficient (TE), we first investigated their total energy expenditure and body composition. We then monitored body temperature and activity rhythms to test whether huddling may impact these rhythms, centered on the suckling event. Pups in a group of eight utilized 40% less energy for thermogenesis when TI than did pups alone and 32% less energy when TE. Pups in groups of eight and four had significantly lower thermoregulatory costs in the TI period, whereas pups in groups of two, four, and eight had lower costs during the TE period. Huddling pups could therefore channel the energy saved into processes of growth and accrued more fat mass (on average 4.5 +/- 1.4 g) than isolated pups, which lost 0.7 g of fat. Pups in groups of four and eight had a body temperature significantly higher by 0.8 degrees C than pups in groups of two and one when TI, whereas no more differences were noted when the TE period was reached. Moreover, pups alone showed an endogenous circadian body temperature rhythm that differed when compared with that of huddling pups, with no rise before suckling. Thus huddling enables pups to invest the saved energy into growth and to regulate their body temperature to be more competitive during nursing, particularly at the early time when they are TI.  相似文献   

5.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

6.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8–10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

7.
Body temperature (T(b)) of rat pups (7-9 days old) raised under a 12:12-h light-dark (L-D) regimen (L: 0700-1900, D: 1900-0700) was consistently higher in D than in L by approximately 1.1 degrees C. We tested the hypothesis that the L-D differences in T(b) were accompanied by differences in the set point of thermoregulation. Measurements were performed on rat pups at 7-9 days after birth. O(2) consumption (VO(2)) and CO(2) production (VCO(2)) were measured with an open-flow method during air breathing, as ambient temperature (T(a)) was decreased from 40 to 15 degrees C at the constant rate of 0.5 degrees C/min. At T(a) >/=33 degrees C, VO(2) was not significantly different between L and D, whereas VCO(2) was higher in L, suggesting a greater ventilation. Over the 33 to 15 degrees C range the VO(2) values in D exceeded those in L by approximately 30%. Specifically, the difference was contributed by differences in thermogenesis at T(a) = 30 to 20 degrees C. As T(a) was decreased, the critical temperature at which VO(2) began to rise was lower in L. We conclude that the higher T(b) of rat pups in D is accompanied by a higher set point for thermoregulation and a greater thermogenesis. These results are consistent with the idea that, in newborns, endogenous changes in the set point of thermoregulation contribute to the circadian oscillations of T(b).  相似文献   

8.
Clinical aspects of human circadian rhythms   总被引:3,自引:0,他引:3  
Circadian rhythmicity can be important in the pathophysiology, diagnosis, and treatment of clinical disease. Due to the difficulties in conducting the necessary experimental work, it remains unknown whether approximately 24-h changes in pathophysiology or symptoms of many diseases are causally linked to endogenous circadian rhythms or to other diurnal factors that change across the day, such as changes in posture, activity, sleep or wake state, or metabolic changes associated with feeding or fasting. Until the physiology is accurately known, appropriate treatment cannot be designed. This review includes an overview of clinical disorders that are caused or affected by circadian or diurnal rhythms. The clinical side effects of disruption of circadian rhythmicity, such as in shiftwork, including the public health implications of the disrupted alertness and performance, are also discussed.  相似文献   

9.
The circadian system develops and changes in a gradual and programmed process over the lifespan. Early in life, maternal care represents an important zeitgeber and thus contributes to the development of circadian rhythmicity. Exposure to early life stress may affect circadian processes and induce a latent circadian disturbance evident after exposure to later life stress. Disturbance of the normal regulation of circadian rhythmicity is surmised to be an etiological factor in depression. We used postnatal maternal separation in rats to investigate how the early life environment might modify the circadian response to later life unpredictable and chronic stress. During postnatal days 2–14, male Wistar rats (n?=?8 per group) were daily separated from their mothers for a period of either 180?min (long maternal separation; LMS) or 10?min (brief maternal separation; BMS). In adulthood, rats were exposed to chronic mild stress (CMS) for 4 weeks. Body temperature, locomotor activity and heart rate were measured and compared before and after CMS exposure. LMS offspring showed a delayed body temperature acrophase compared to BMS offspring. Otherwise, adult LMS and BMS offspring demonstrated similar diurnal rhythms of body temperature, locomotor activity and heart rate. Exposure to CMS provoked a stronger and longer lasting hypothermia in LMS rats than in BMS rats. The thermoregulatory response appears to be moderated by maternal care following reunion, an observation made in the LMS group only. The results show that early life stress (LMS) in an early developmental stage induced a thermoregulatory disturbance evident upon exposure to unpredictable adult life stressors.  相似文献   

10.
Summary Experiments were designed to test whether or not the 24-h core temperature fluctuations in week-old rat pups are of endogenous origin. Lean (Fa/-) Zucker rat pups born on the same day to mothers maintained in two different colonies with light/dark cycles 12 h out of phase with each other were mother-reared through the first 3–4 days of life and then artificially reared simultaneously in constant dim light. Continuous, automatic measurement of core temperature and oxygen consumption during artificial rearing showed clear 24-h rhythms in 5- to 8-day-old pups. Each rhythm reached a daily minimum at a time corresponding to the beginning of the light period in the colony of origin. The amplitude of these rhythms did not diminish during artificial rearing, nor did the phase difference between the rhythms of pups originating in the two colonies systematically change. The persistent 12-h phase differences between these two groups of pups prove that the observed rhythms are not caused by exogenous stimuli. We conclude that the rat pup possesses an endogenous time-keeping mechanism that permits the expression of overt rhythmicity at the age of 1 week.Abbreviations Tc core temperature - LD-pups born to a mother entrained to a 7:00 to 19:00 light cycle, then artificially reared in constant dim light - DL-pups born to a mother entrained to a 19:00 to 7:00 light cycle, then artificially reared in constant dim light - SCN suprachiasmatic nucleus  相似文献   

11.
12.
Internal and external factors contribute to resting core temperature and affect thermoregulation. Also, a robust circadian rhythm exists, implying that the body is in “heat-gain” or “heat-loss” modes at different times during the 24 h. Moreover, many variables associated with exercise, and the body's capacity for exercise, show circadian variation. All these factors contribute to circadian changes in thermoregulation during exercise. Attention is focused on responses at the onset of exercise, “critical temperature”, and recovery after exercise. Practical implications of circadian changes in thermoregulation during exercise include ergogenic aids and inter-individual differences, including those due to gender, age and acclimatisation.  相似文献   

13.
Individual hamster pups were maintained in constant dim light from just prior to birth, and their circadian wheel-running activity rhythms were recorded beginning at 18 days of age. Records of the postweaning free-running activity rhythm were used to determine the phase of a pup's rhythm on the day of weaning. Two groups of pups (LD and DL) were born to mothers that had been entrained before birth to light-dark cycles 12 hr out of phase. Both groups of pups were raised in constant dim light by foster mothers that had been entrained to only one of the prenatal cycles (LD). Thus pups born to mothers from different cycles were exposed to identical rhythmic environments postnatally. Despite the similar postnatal treatment, the two groups of pups showed activity rhythms at weaning with very different phases. The LD pups, born to and raised by LD mothers, were approximately synchronous with one another and with their foster mothers. The DL pups, born to DL mothers, but raised by LD mothers, were not synchronous with one another or with their foster mothers. Half of the DL pups showed phases predicted by their prenatal treatment, but the other half showed scattered phases. The results demonstrate that phase at weaning is affected by prenatal rhythmicity, and suggest that the circadian pacemaker underlying the activity rhythm is already functional and entrained at, or before, birth.  相似文献   

14.
This review discusses the experimental evidence indicating that arthritis disrupts circadian organization, which was mainly derived from animal studies employing Freund's complete mycobacterial adjuvant (FCA). The defense response to antigenic challenge, mediated in part by cytokines, includes changes in chronobiological central nervous system function, like depressed daily activity, superficial sleep or anorexia. Interferon (IFN)-gamma receptors are detectable in the central circadian pacemaker, the hypothalamic suprachiasmatic nuclei, at a time when the capacity for photic entrainment of the pacemaker became established. The disruptive effects of the systemic injection of IFN on the circadian rhythms of locomotor activity, body temperature and clock-gene mRNA expression have been documented. In the last few years we have examined a number of immune and neuroendocrine circadian rhythms in FCA-injected rats, both in the preclinical phase of arthritis (2-3 days after FCA injection) as well as in the acute phase of the disease (18 days after FCA injection). In arthritic rats, the 24-hour organization of immune and neuroendocrine responses becomes altered. A hormonal pathway involving the circadian secretion of melatonin and a purely neural pathway including, as a motor leg, the autonomic nervous system innervating the lymph nodes were identified. The significant effects of the immune-mediated inflammatory response on the diurnal rhythmicity of adenohypophysial and hypophysiotropic hormones occurred in arthritic rats. Melatonin treatment prevented the alteration in 24-hour rhythms of serum ACTH, prolactin and luteinizing hormone in rats injected with FCA. In addition, melatonin pretreatment prevented the alteration in the 24-hour variation in hypothalamic serotonin and dopamine turnover during the preclinical phase of Freund's adjuvant arthritis in rats. Some pinealectomy-induced immune changes in arthritic rats were also prevented by physiological concentrations of melatonin. Melatonin may play the role of an 'internal synchronizer' for the immune system.  相似文献   

15.
European ground squirrels (Spermophilus citellus) in outside enclosures show suppressed circadian rhythmicity in body temperature patterns during the first days of euthermia after hibernation. This may reflect either gradual reappearance of circadian rhythmicity following suppressed functioning of the circadian system during hibernation, or it may reflect transient days during re-entrainment of the circadian system which, during hibernation, has drifted out of phase with the environmental light-dark cycle. Here we report that animals kept under continuous dim light conditions also showed absence of circadian rhythmicity in activity and body temperature in the first 5-15 days after hibernation. After post-hibernation arrhythmicity, spontaneous circadian rhythms re-appeared gradually and increased daily body temperature range. Numbers of arginine-vasopressin immunoreactive neurons in the suprachiasmatic nuclei correlated positively with individual circadian rhythmicity and increased gradually over time after hibernation. Furthermore, circadian rhythmicity was enhanced rather than suppressed after exposure to a light-dark cycle but not after a single 1-h light pulse (1,700 lux). The results support the view that the functioning of the circadian system in the European ground squirrel is suppressed during hibernation at low temperatures and that it requires several days of euthermia to resume its summer function.  相似文献   

16.

Background

Within their litter, young altricial mammals compete for energy (constraining growth and survival) but cooperate for warmth. The aim of this study was to examine the mechanisms by which huddling in altricial infants influences individual heat production and loss, while providing public warmth. Although considered as a textbook example, it is surprising to note that physiological mechanisms underlying huddling are still not fully characterised.

Methodology/Principal Findings

The brown adipose tissue (BAT) contribution to energy output was assessed as a function of the ability of rabbit (Oryctolagus cuniculus) pups to huddle (placed in groups of 6 and 2, or isolated) and of their thermoregulatory capacities (non-insulated before 5 days old and insulated at ca. 10 days old). BAT contribution of pups exposed to cold was examined by combining techniques of infrared thermography (surface temperature), indirect calorimetry (total energy expenditure, TEE) and telemetry (body temperature). Through local heating, the huddle provided each pup whatever their age with an ambient “public warmth” in the cold, which particularly benefited non-insulated pups. Huddling allowed pups facing a progressive cold challenge to buffer the decreasing ambient temperature by delaying the activation of their thermogenic response, especially when fur-insulated. In this way, huddling permitted pups to effectively shift from a non-insulated to a pseudo-insulated thermal state while continuously allocating energy to growth. The high correlation between TEE and the difference in surface temperatures between BAT and back areas of the body reveals that energy loss for non-shivering thermogenesis is the major factor constraining the amount of energy allocated to growth in non-insulated altricial pups.

Conclusions/Significance

By providing public warmth with minimal individual costs at a stage of life when pups are the most vulnerable, huddling buffers cold challenges and ensures a constant allocation of energy to growth by reducing BAT activation.  相似文献   

17.
The aim of this study was to discover which of three major abnormalities of the genetically obese Zucker rat (fa/fa), namely hyperphagia, excess adiposity, and hyperlipidemia, is the first to appear prior to manifest obesity, i.e., before weaning. Suckling fa/fa rats, bred from heterozygous parents, were detected by sizing fat cells obtained from an inguinal fat pad biopsy. Cell hypertrophy was observed in fa/fa rats, compared to Fa/-littermates of the same sex, as soon as 5-7 days after birth. Prediction of fa/fa genotype at this age by this method was assessed using a series of 80 pups and proved to be totally successful. The identity of the "predicted" obese pups was confirmed morphologically at 6 weeks of age. Food (milk) intake was estimated from water turnover rates determined on 86 pups aged 2-8 days using tritiated water. The results show that 7-day-old fa/fa rats had heavier inguinal fat pads with larger adipocytes and higher lipoprotein lipase activity than their lean controls. There was no genotype effect on water intake adjusted to body weight during the first week of life. Moreover weight of stomach contents and triglyceridemia were similar in all animals at 7 days. These results show that excess adiposity develops in the fa/fa rat during the first week of life, before hypertriglyceridemia and hyperphagia, and raises the question of whether this adiposity results from a defect in energy expenditure or an abnormality of fat cell storage capacity, or both.  相似文献   

18.
Suckling-age rats display endogenous circadian rhythmicity of metabolic rate (MR) with energy-saving, torpor-like decreases, which are sympathetically controlled and suppressed by leptin treatment. We investigated whether neonatal monosodium glutamate (MSG) treatment, known to cause arcuate nucleus damage and adult-age obesity, alters energy balance in the first two postnatal weeks. Continuously recorded MR and core temperatures (T(c)) show that MSG treatment disinhibits the periodic, sympathetically controlled, energy-saving drops of T(c) and MR. Increased energy expenditure thus explains reduced body fat at normal lean body mass found in MSG-treated pups artificially nourished identically to controls. In MSG-treated mother-reared pups, lean body mass is additionally reduced, suggesting that MSG also reduces suckling. Plasma leptin levels are similar in controls and MSG-treated pups but higher per unit of fat mass in the latter. We conclude that the postweaning development of MSG obesity and depressed thermogenesis are preceded by an early phase of increased energy expenditure with decreased fat deposition during suckling age and hypothesize cell damage in the arcuate nucleus to be involved in both.  相似文献   

19.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

20.
Rats were cooled at different time points of early postnatal development to study the effects of short-term stress on the parameters of the circadian rhythm of the adrenocortical function in adults. It was found that rats stressed at the age of 2-4 or 17-19 days exhibit modified tuning in the circadian periodicity of the adrenocortical function as adults. Cold stimulation during early development does not affect the function of isolated adrenal glands in vitro. It is concluded that the effect of early stress on the adrenocortical rhythmicity in adults is mediated through central regulatory mechanisms. This effect depends on the age when the rat pups are exposed to cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号