首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population structure of variation in a nuclear actin intron and the control region of mitochondrial DNA is described for humpback whales from eight regions in the North Pacific Ocean: central California, Baja Peninsula, nearshore Mexico (Bahia Banderas), offshore Mexico (Socorro Island), southeastern Alaska, central Alaska (Prince Williams Sound), Hawaii and Japan (Ogasawara Islands). Primary mtDNA haplotypes and intron alleles were identified using selected restriction fragment length polymorphisms of target sequences amplified by the polymerase chain reaction (PCR–RFLP). There was little evidence of heterogeneity in the frequencies of mtDNA haplotypes or actin intron alleles due to the year or sex composition of the sample. However, frequencies of four mtDNA haplotypes showed marked regional differences in their distributions (ΦST = 0.277; P < 0.001; n = 205 individuals) while the two alleles showed significant, but less marked, regional differences (ΦST = 0.033; P < 0.013; n = 400 chromosomes). An hierarchical analysis of variance in frequencies of haplotypes and alleles supported the grouping of six regions into a central and eastern stock with further partitioning of variance among regions within stocks for haplotypes but not for alleles. Based on available genetic and demographic evidence, the southeastern Alaska and central California feeding grounds were selected for additional analyses of nuclear differentiation using allelic variation at four microsatellite loci. All four loci showed significant differences in allele frequencies (overall FST = 0.043; P < 0.001; average n = 139 chromosomes per locus), indicating at least partial reproductive isolation between the two regions as well as the segregation of mtDNA lineages. Although the two feeding grounds were not panmictic for nuclear or mitochondrial loci, estimates of long-term migration rates suggested that male-mediated gene flow was several-fold greater than female gene flow. These results include and extend the range and sample size of previously published work, providing additional evidence for the significance of genetic management units within oceanic populations of humpback whales.  相似文献   

2.
The genetic population structure of the small cyprinid Hemigrammocypris rasborella, distributed widely in lowlands of western Japan, was examined using partial sequence data of mitochondrial DNA (mtDNA). Molecular phylogenetic analysis revealed that the populations of the western Kyushu region were markedly differentiated from all eastern populations, such that the groups would be comparable to different species; their divergence was inferred to have occurred in the Late Miocene–Pliocene. Also, a largely divergent mtDNA group (with divergence in the early Pleistocene) was found in the Sanyo and northeastern Shikoku regions, forming a secondary contact zone in the western Kinki with the eastern mtDNA group. To date, these aspects of the population structure of H. rasborella appear to be unique among lowland fishes in western Japan. Deeper understanding of the formation processes of freshwater faunas in western Japan will require further comparisons of the phylogeographic patterns and ecological traits of constituent species.  相似文献   

3.
Although largely solitary, humpback whales exhibit a number of behaviours where individuals co-operate with one another, for example during bubble net feeding. Such cases could be due to reciprocal altruism brought on by exceptional circumstances, for example the presence of abundant shoaling fish. An alternative explanation is that these behaviours have evolved through kin selection. With little restriction to either communication or movement, diffuse groups of relatives could maintain some form of social organization without the need to travel in tight-nit units. To try to distinguish between these hypotheses, we took advantage of the fact that migrating humpback whales often swim together in small groups. If kin selection is important in humpback whale biology, these groups should be enriched for relatives. Consequently, we analysed biopsy samples from 57 groups of humpback whales migrating off Eastern Australia in 1992. A total of 142 whales were screened for eight microsatellite markers. Mitochondrial DNA sequences (371 bp) were also used to verify and assist kinship identification. Our data add support to the notion that mothers travel with their offspring for the first year of the calf's life. However, beyond the presence of mother-calf/yearling pairs, no obvious relatedness pattern was found among whales sampled either in the same pod or on the same day. Levels of relatedness did not vary between migratory phases (towards or away from the breeding ground), nor between the two sexes considered either overall or in the north or south migrations separately. These findings suggest that, if any social organization does exist, it is formed transiently when needed rather than being a constant feature of the population, and hence is more likely based on reciprocal altruism than kin selection.  相似文献   

4.
The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus ( n  =   330) and two of its trematode parasites, Maritrema novaezealandensis ( n  =   269) and Philophthalmus sp. ( n  =   246), using cytochrome c oxidase subunit I gene ( COI ) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits.  相似文献   

5.
人类mtDNA序列是遵循母系遗传的重要生物信息学资源,利用遗传算法和k-modes模型结合的聚类算法,对西安和长沙两个区域人群mtDNA序列进行聚类分析,在分子层次上阐明了西安和长沙两地区人口结构特点.发现西安地区人口是发散性分布,而长沙地区人口具有主导性类群.  相似文献   

6.
Age is a fundamental aspect of animal ecology, but is difficult to determine in many species. Humpback whales exemplify this as they have a lifespan comparable to humans, mature sexually as early as 4 years and have no reliable visual age indicators after their first year. Current methods for estimating humpback age cannot be applied to all individuals and populations. Assays for human age have recently been developed based on age‐induced changes in DNA methylation of specific genes. We used information on age‐associated DNA methylation in human and mouse genes to identify homologous gene regions in humpbacks. Humpback skin samples were obtained from individuals with a known year of birth and employed to calibrate relationships between cytosine methylation and age. Seven of 37 cytosines assayed for methylation level in humpback skin had significant age‐related profiles. The three most age‐informative cytosine markers were selected for a humpback epigenetic age assay. The assay has an R2 of 0.787 (P = 3.04e?16) and predicts age from skin samples with a standard deviation of 2.991 years. The epigenetic method correctly determined which of parent–offspring pairs is the parent in more than 93% of cases. To demonstrate the potential of this technique, we constructed the first modern age profile of humpback whales off eastern Australia and compared the results to population structure 5 decades earlier. This is the first epigenetic age estimation method for a wild animal species and the approach we took for developing it can be applied to many other nonmodel organisms.  相似文献   

7.
本文基于实验室筛选得到的13 对内含子标记,在鲸偶蹄目的15 个物种中进行有效扩增,并重建了这15
个物种的系统发育关系。结果表明,抹香鲸总科(Physeteroidea) 位于齿鲸亚目(Odontoceti)的基部,从而支
持了传统的齿鲸亚目的单系性。在海豚总科(Delphinoidea)内部,贝斯分析结果支持了鼠海豚科(Phocoenidae)
和一角鲸科(Monodontidae)的姐妹群关系,而后再与海豚科(Delphinidae)相聚。系统发育分析同时还
强烈支持了海豚科的四个属(Sousa,Tursiops,Stenella,Delphinus)组成一个单系的“复合体”。另外,我们的分
析结果并不支持瓶鼻海豚属(Tursiops)和原海豚属(Stenella)的单系性。基于松散分子钟的分歧时间估算与以
往文献中的结果没有明显差异。这些研究结果提示,核基因内含子序列有希望解决一些长期存在的鲸类系统发
育问题。  相似文献   

8.
The genetic variability and population structure of worldwide populations of the sperm whale was investigated by sequence analysis of the first 5''L 330 base pairs in the mitochondrial DNA (mtDNA) control region. The study included a total of 231 individuals from three major oceanic regions, the North Atlantic, the North Pacific and the Southern Hemisphere. Fifteen segregating nucleotide sites defined 16 mtDNA haplotypes (lineages). The most common mtDNA types were present in more than one oceanic region, whereas ocean-specific types were rare. Analyses of heterogeneity of mtDNA type frequencies between oceans indicated moderate (GST = 0.03) but statistically significant (p = 0.0007) genetic differentiation on a global scale. In addition, strong genetic differentiation was found between potential social groups (GST = 0.03-0.6), indicating matrilineal relatedness within groups. The global nucleotide diversity was quite low (pi = 0.004) implying a recent common mtDNA ancestry (< 100,000) years ago) and a young global population structure. However, within this time period, female dispersal has apparently been limited enough to allow the development of global mtDNA differentiation. The results are consistent with those from observational studies and whaling data indicating stable social affiliations, some degree of area fidelity and latitudinal range limitations in groups of females and juveniles.  相似文献   

9.
The genetic structure of humpback whale populations and subpopulation divisions is described by restriction fragment length analysis of the mitochondrial (mt) DNA from samples of 230 whales collected by biopsy darting in 11 seasonal habitats representing six subpopulations, or 'stocks', world-wide. The hierarchical structure of mtDNA haplotype diversity among population subdivisions is described using the analysis of molecular variance (AMOVA) procedure, the analysis of gene identity, and the genealogical relationship of haplotypes as constructed by parsimony analysis and distance clustering. These analyses revealed: (i) significant partitioning of world-wide genetic variation among oceanic populations, among subpopulations or 'stocks' within oceanic populations and among seasonal habitats within stocks; (ii) fixed categorical segregation of haplotypes on the south-eastern Alaska and central California feeding grounds of the North Pacific; (iii) support for the division of the North Pacific population into a central stock which feeds in Alaska and winters in Hawaii, and an eastern or 'American' stock which feeds along the coast of California and winters near Mexico; (iv) evidence of genetic heterogeneity within the Gulf of Maine feeding grounds and among the sampled feeding and breeding grounds of the western North Atlantic; and (v) support for the historical division between the Group IV (Western Australia) and Group V (eastern Australia, New Zealand and Tonga) stocks in the Southern Oceans. Overall, our results demonstrate a striking degree of genetic structure both within and between oceanic populations of humpback whales, despite the nearly unlimited migratory potential of this species. We suggest that the humpback whale is a suitable demographic and genetic model for the management of less tractable species of baleen whales and for the general study of gene flow among long-lived, mobile vertebrates in the marine ecosystem.  相似文献   

10.
A portion of the mitochondrial control region (494 bp) was sequenced in 106 great reed warblers sampled in six breeding populations in Europe and one wintering population in Africa. In total, 33 different haplotypes were found. There was little evidence of divergence between populations in northern and western Europe whereas the sample from Greece differed significantly from the other European breeding populations. The lowest haplotypc diversity was found near the distribution range limit in Sweden and in The Netherlands suggesting recent effects of bottlenecks/founder events in these areas. A neighbour-joining analysis of the different haplotypes placed the haplotypes into two distinctive clades, A and B. The divergence of the two clades was on average 1.29%. Accounting for the within cladc variation suggested a divergence time between these lines approximately 70 000 years BP. The frequency of the two clades changed longitudinally across Europe with the A haplotypc in the west and the B haplotypc in the east. All birds from Kenya carried the B haplotypc suggesting an origin of these birds east of Latvia/Greece. The long-term female effective population size was estimated to be 20 000 individuals, which is approximately 2% of current population size.  相似文献   

11.
North Pacific humpback whales (Megaptera novaeangliae) migrate annually to foraging grounds in Southeast Alaska that are characterized by semidiurnal tidal cycles. Tidal activity is an important driver of marine mammal behavior on foraging grounds, but is often omitted in studies of acoustic ecology. To better understand the role of sound in this vocal species we investigated the influence of tidal height and direction on humpback whale nonsong calling behavior in Frederick Sound and described new call types for this population. The likelihood of detecting a call from the low‐frequency‐harmonic, pulsed, or noisy‐complex call classes was independent of tidal activity. The likelihood of detecting a call from the tonal call class, and a feeding call in particular, was 2.1 times higher during flood tides than during ebb tides (95% CI 1.1–4.4). This likely reflects an indirect relationship between humpback whale foraging and tides.  相似文献   

12.
13.
14.
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.  相似文献   

15.
<正>中国大陆沿岸属大陆棚水域,常见的齿鲸物种以近岸型的海豚科(Delphinidae)、小抹香鲸科(Kogiidae)及鼠海豚科(Phocaenidae)动物为主(王丕烈,2012),而喙鲸科(Ziphiidae)发现纪录相对较少,近年来仅由王丕烈等(2011)针对喙鲸科的中喙鲸属(Mesoplodon)标本进行检视校正,认为中国大陆沿岸存在柏氏中喙鲸  相似文献   

16.
Gene translocations from the organelles to the nucleus are postulated by the endosymbiont hypothesis. We here report evidence for sequence insertions in the nuclear genomes of plants that are derived from noncoding regions of the mitochondrial genome. Fragments of mitochondrial group II introns are identified in the nuclear genomes of tobacco and a bean species. The duplicated intron sequences of 75–140 bp are derived from cis- and trans-splicing introns of genes encoding subunits 1 and 5 of the NADH dehydrogenase. The mitochondrial sequences are inserted in the vicinities of a lectin gene, different glucanase genes and a gene encoding a subunit of photosystem II. Sequence similarities between the nuclear and mitochondrial copies are in the range of 80 to 97%, suggesting recent transfer events that occurred in the basic glucanase genes before and in the lectin gene after the gene duplications in the evolution of the nuclear gene families. Overlapping regions of the same introns are in two instances also involved in intramitochondrial sequence duplications. Correspondence to: V. Knoop  相似文献   

17.
Two groups of humpback whales inhabit the waters off the Pacific coast of Mexico the coastal wintering aggregation in the north (MX), and the southern Mexico/Central America wintering aggregation (S-MX/CEA) in the south. However, along the coast of the Mexican Central Pacific (MCP), the population affiliation of humpback whales is uncertain. Some studies have concluded that the MCP whales are part of S-MX/CEA, while others have suggested that the MCP may represent an overlap zone between the two wintering aggregations. In this study, data from 354 biopsy samples were collected over a 12-year period, to provide insight from genetic information into the affiliation of MCP whales to and the boundaries between the wintering aggregations. Using mitochondrial control region sequences, we found that the majority (73%) of MCP whales are part of MX, but that the boundary between the two wintering aggregations may shift latitudinally depending on environmental conditions. The high haplotypic (h ± SD = 0.859 ± 0.0138) and nucleotide diversity (π ± SD = 0.0145 ± 0.0075) of the MCP whales are also consistent with our sample, including animals from both wintering aggregations. More research is needed to better describe the ranges of the MX and S-MX/CEA wintering aggregations to ensure their successful conservation and management.  相似文献   

18.
19.
20.
To examine whether demographic and life-history traits are correlated with genetic structure, we contrasted mtDNA lineages of individual humpback whales (Megaptera novaeangliae) with sighting and reproductive histories of female humpback whales between 1979 and 1995. Maternal lineage haplotypes were obtained for 323 whales, either from direct sequencing of the mtDNA control region (n = 159) or inferred from known relationships along matrilines from the sequenced sample of individuals (n = 164). Sequence variation in the 550 bp of the control region defined a total of 19 maternal lineage haplotypes that formed two main clades. Fecundity increased significantly over the study period among females of several lineages among the two clades. Individual maternal lineages and other clades were characterized by significant variation in fecundity. The detected heterogeneity of reproductive success has the potential to substantially affect the frequency and distribution of maternal lineages found in this population over time. There were significant yearly effects on adult resighting rates and calf survivorship based on examination of sighting histories with varying capture-recapture probability models. These results indicate that population structure can be influenced by interactions or associations between reproductive success, genetic structure, and environmental factors in a natural population of long-lived mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号