首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choline kinase, the first enzyme in the CDP-choline pathway for phosphatidylcholine biosynthesis, was purified 26,000-fold from rat liver to a specific activity of 143,000 nmol.min-1.mg-1 protein. The subunit molecular mass was 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the apparent native molecular mass was 160 kDa by size exclusion chromatography, suggesting a tetrameric structure. Two peaks of choline kinase activity were obtained by chromatofocusing. These isoforms eluted at pH 4.7 (CKI) and 4.5 (CKII). CKII appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Peptide mapping of two isoforms indicated a high degree of similarity, although there were peptides not common to both. Ethanolamine kinase activity copurified with both isoforms. The ratio of choline to ethanolamine kinase activity was 3.7 +/- 0.7 throughout the purification procedure. Choline and ethanolamine were mutually competitive inhibitors. The respective Km values, 0.013 and 1.2 mM, were similar to the Ki values of 0.014 and 2.2 mM. An antibody raised against CKII immunoprecipitated both choline and ethanolamine kinase activities from liver cytosol at the same titer. These data suggest that both activities reside on the same protein and occur at the same active site. Similarly, both activities were immunoprecipitated from brain, lung, and kidney cytosols. Western blot analysis showed both purified liver isoforms, as well as brain, lung and kidney enzymes, to have a molecular mass of 47 kDa.  相似文献   

2.
Choline kinase (EC 2.7.1.32) was investigated in plasmodium falciparum-infected erythrocytes. Disrupted infected erythrocytes had a choline kinase activity of 1.9 +/- 0.2 nmol phosphorylcholine/10(7) infected cells per h, whereas the activity in normal uninfected erythrocytes was less than 6 pmol/10(7) cells per h. A broad alkaline optimal pH (7.9-9.2) was observed. The Km values for choline and ATP were 79 +/- 20 microM, and 1.3 +/- 0.3 mM, respectively. ATP concentrations higher than 12 mM inhibited choline kinase. Maximal activity was registered with a Mg2+ concentration of 10 mM, whereas its replacement by Mn2+, or other divalent cations, involved a decrease in choline kinase activity of at least 75%. Inhibition by products of the reaction, such as phosphorylcholine and ADP was investigated. In plasmodium knowlesi-infected erythrocytes, choline kinase had similar properties, but with a much higher specific activity of 16.4 +/- 2.1 nmol/10(7) infected cells per h. Subcellular fractionation of P. knowlesi-infected erythrocyte suspensions revealed that choline kinase was located exclusively in the cytosol of the parasite. We show that this enzyme is a useful index of parasite cytosolic content leakage, when infected erythrocytes are fractionated by saponin lysis or nitrogen decompression.  相似文献   

3.
Choline kinase and ethanolamine kinase are located in the cytosol from rat liver and have been copurified more than 500-fold by affinity chromatography [P. J. Brophy and D. E. Vance (1976) FEBS Lett. 62, 123-125]. Kinetic properties of the two activities were determined. Choline kinase had a Km for choline of 0.033 mM and ethanolamine was a competitive inhibitor (Ki = 6.2 mM). Ethanolamine kinase had a Km for ethanolamine of 7.7 mM and choline was a 'mixed' type of inhibitor with a Ki of 0.037 mM. Both enzymes activities responded in a similar fashion to the adenylate energy charge. Betaine and choline phosphate partially inhibited both kinases with a 93% inhibition of the ethanolamine kinase by 5 mM choline phosphate. CTP and ethanolaminephosphate partially inhibited the ethanolamine kinase, but not the choline kinase. Other metabolites tested had negliglible effects on both kinases. The affinity-column-purified enzyme was analyzed by disc gel electrophoresis which resolved the two activities. Hence, although many of the properties of the two activities are similar, choline kinase and ethanolamine kinase must be separate enzymes. Analysis of rat liver cytosol by disc gel electrophoresis indicated four isoenzymes for choline kinase and ethanolamine kinase.  相似文献   

4.
Choline kinase is the first enzymatic step in the CDP-choline pathway for phosphatidylcholine biosynthesis. The genome of the nematode, Caenorhabditis elegans, contains seven genes that appear likely to encode choline and/or ethanolamine kinases. We cloned five and expressed four of these genes, and purified or partially purified three of the encoded enzymes. All expressed proteins had choline kinase activity; those that most closely resemble the mammalian choline kinases were the most active. CKA-2, a very active form, was purified to near homogeneity. The K(m) values for CKA-2 were 1.6 and 2.4 mM for choline and ATP, respectively, and k(cat) was 74 s(-1). CKA-2 was predominantly a homodimer as assessed by glycerol gradient sedimentation and dynamic light scattering. CKB-2, which was less similar to mammalian choline kinases, had K(m) values for choline and ATP of 13 and 0.7 mM, and k(cat) was 3.8 s(-1). Both of these highly purified enzymes required magnesium, had very alkaline pH optima, and were much more active with choline as substrate than with ethanolamine. These results provide a foundation for future studies on the structure and function of choline kinases, as well as studies on the genetic analysis of the function of the multiple isoforms in this organism.  相似文献   

5.
M L Ancelin  H J Vial 《FEBS letters》1986,202(2):217-223
In Plasmodium falciparum-infected erythrocyte homogenates, the specific activity of ethanolamine kinase (7.6 +/- 1.4 nmol phosphoethanolamine/10(7) infected cells per h) was higher than choline kinase specific activity (1.9 +/- 0.2 nmol phosphocholine/10(7) infected cells per h). The Km of choline kinase for choline was 79 +/- 20 microM, and ethanolamine was a weak competitive inhibitor of the reaction (Ki = 92 mM). Ethanolamine kinase had a Km for ethanolamine of 188 +/- 19 microM, and choline was a competitive inhibitor of ethanolamine kinase with a very high Ki of 268 mM. Hemicholinium 3 inhibited choline kinase activity, but had no effect on ethanolamine kinase activity. In contrast, D-2-amino-1-butanol selectively inhibited ethanolamine kinase activity. Furthermore, when the two enzymes were subjected to heat inactivation, 85% of the choline kinase activity was destroyed after 5 min at 50 degrees C, whereas ethanolamine kinase activity was not altered. Our results indicate that the phosphorylation of choline and ethanolamine was catalyzed by two distinct enzymes. The presence of a de novo phosphatidylethanolamine Kennedy pathway in P. falciparum contributes to the bewildering variety of phospholipid biosynthetic pathways in this parasitic organism.  相似文献   

6.
Choline, a component of the wall teichoic acid of Streptococcus pneumoniae, was converted to cytidine diphosphocholine via choline phosphate by enzymes which were identified in cell-free extracts of the pneumococcus. The first enzyme, choline kinase, was investigated in some detail. It appeared to have a pH optimum of 7.3 to 7.4 and was stimulated by Mg2+. Kinetic studies gave an apparent Michaelis constant (Km) for ATP of I mM, and for choline of 0.19 mM, with Vmax values of 3 nmol min-1 (mg protein)-1 and 0.5 nmol min-1 (mg protein)-1 respectively. The second enzyme, CDPcholine pyrophosphorylase was specific for CTP and had a requirement for Mg2+ with an optimum at 7 mM.  相似文献   

7.
Fractionation of rat liver cytosol on DEAE-cellulose resolved two S6 kinases eluting at 25 mM KCl (peak I) and 100 mM KCl (peak II). The apparent molecular weights of the peak I and peak II kinases are 26,300 and 67,000, respectively. The peak II kinase was further purified and characterized. Incubation of the kinase with [gamma-32P] ATP and Mg2+ resulted in the incorporation of 32P predominantly into a 67-kDa band. Optimal activity of the kinase was observed in the presence of 5 mM Mg2+ and in the pH range of 8.0-8.5. The Km for ATP and 40S subunit were 7.3 microM and 1.5 microM, respectively. The Mg(2+)-stimulated kinase activity was inhibited by various divalent metals, NaF, and polyamines. The properties of the peak II S6 kinase are very similar or identical to the previously described mitogen-activated S6 protein kinase and may represent the nonactivated form of this enzyme.  相似文献   

8.
Vinblastine-isolated microtubule protein from chick embryonic muscles has an enzymatic activity which catalyzes the formation of phosphatidic acid from diglycerides and ATP. The pH optimum (6.4), sedimentation on sucrose gradients (Mr = 85 000), and sensitivity to ions of this diglyceride kinase activity are different to those of a similar enzymatic activity present in 150 000 X g supernatants of chick embryonic muscle homogenates, suggesting that it is a different species which is associated specifically with the microtubules. The reaction requires a divalent ion (e.g. 0.4 mM Mg2+ gives half-maximal stimulation), and GTP can replace ATP rather effectively, especially at nucleotide concentrations lower than 50 muM. The sedimentation of the diglyceride kinase on sucrose gradients coincides with that of the microtubules-associated protein kinase (Mr = 75 000); the heat-stability and sensivitity to proteolysis of both activities are also very similar. Stimulation of one reaction by the addition of the corresponding exogenous substrate does not impair the phosphorylation of the other, and no radioactivity is lost from phosphatidic acid or the protein moiety upon incubation of pre-labelled microtubules with a large excess of unlabelled ATP or GTP. In addition to diglyceride and protein kinase activities (0.2 and 0.3 nmol 32P-transferred X min-1 X mg-1 microtubular protein, respectively), microtubules also contain an associated ATPase (2.8 nmol X min-1 X mg-1), which requires either Mg2+ or Ca2+, can hydrolyze GTP quite effectively, and sediments with a molecular weight of 95000. The results obtained are discussed in connection with the possible relationships existing among these enzymatic activities, as well as their probable role in microtubular functions.  相似文献   

9.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

10.
Monomethylethanolamine (MEA) kinase and dimethylethanolamine (DEA) kinase activities were purified 950 and 750 fold respectively from rat liver by conventional procedures. Certain properties of the partially purified enzyme preparation suggest that they are different from both choline kinase activity and ethanolamine kinase activity and differ from one another. This is based upon the following observations: 1. The heat stabilities of MEA kinase and DEA kinase activities are significantly different from one another and are different from the stability of choline kinase and ethanolamine kinase activities. 2. K+ in the presence of Mg2+ increases MEA kinase activity by 100% but has no effect on DEA kinase activity. 3. Different Ki values and the types of inhibition by several structurally related amino alcohols were found for MEA kinase and DEA kinase activities. 4. The purification fold of MEA kinase and DEA kinase are different from each other and from that of choline kinase and ethanolamine kinase.  相似文献   

11.
Two nuclear cAMP-independent protein kinases (designated PK-N1 and PK-N2) were purified from rat ventral-prostate and liver. The yield of enzyme units was 4-5% and 7-9% for each enzyme from the prostatic nuclei and liver nuclei, respectively. The average fold purification for prostatic nuclear protein kinase N1 and N2 was 1360 and 1833, respectively. The respective average specific activity of the two enzymes towards casein was 81,585 and 110,000 nmol 32P incorporated/hr/mg of enzyme. Protein kinase N1 comprised one polypeptide of Mr 35,000 which underwent phosphorylation in the presence of Mg2+ + ATP. Protein kinase N2 comprised two polypeptides Mr 40,000 and 30,000 of which only the Mr 30,000 polypeptide was autophosphorylated. Both enzymes were active towards casein, phosvitin, dephosphophosvitin, spermine-binding protein, and non-histone proteins in vitro. Little activity was detected towards histones. Both enzymes were stimulated by 150-200 mM NaCl. MgCl2 requirement varied with the protein substrate but was between 2-4 mM for both enzymes. With dephosphophosvitin as substrate, the apparent Km for ATP for N1 protein kinase was 0.01 mM. GTP did not replace ATP in this reaction. Protein kinase N2 was active in the presence of ATP or GTP. The apparent Km was 0.01 mM for ATP, but 0.1 mM for GTP.  相似文献   

12.
Diacylglycerol kinase activity was demonstrated in highly purified plasma membranes isolated from shoots and roots of dark-grown wheat (Triticum aestivum L.) by aqueous polymer two-phase partitioning. The active site of the diacylglycerol kinase was localized to the inner cytoplasmic surface of the plasma membrane using isolated inside-out and right-side-out plasma membrane vesicles from roots. The enzyme activity in plasma membrane vesicles from shoots showed a broad pH optimum around pH 7. The reaction was Mg2+ and ATP dependent, and maximal activity was observed around 0.5 mM ATP and 3 mM MgCl2. The Mg2+ requirement could be substituted only partially by Mn2+ and not at all by Ca2+. The phosphorylation of endogenous diacylglycerol was strongly inhibited by detergents indicating an extreme dependence of the lipid environment. Inositol phospholipids stimulated the activity of diacylglycerol kinase in plasma membranes from shoots and roots, whereas the activity was inhibited by R59022, a putative inhibitor of several diacylglycerol kinase isoenzymes involved in uncoupling diacylglycerol activation of mammalian protein kinase C.  相似文献   

13.
An enzyme which catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate (TDP), thiamindiphosphate kinase (ATP:thiamin diphosphate phosphotransferase) [EC 2.7.4.15], was detected in animal tissues. The enzyme was partially purified (150-fold) from the cytosol fraction of guinea pig brain. The enzyme reaction required free (not protein-bound) TDP, ATP, Mg2+, and a cofactor, which is a low molecular weight and heat-stable compound. The enzyme activity was optimal at pH 11 and at 25 degrees C. A stoichiometric transfer of 32P from [gamma-32P]ATP to TDP was demonstrated. Km values for TDP and ATP were calculated to be 1.1 mM and 10 microM, respectively, and Vmax was 868 nmol/mg of protein/hr. The enzyme was found solely in the cytosol fraction of guinea pig brain and was also detectable in the skeletal muscle and heart. These results provide strong evidence for the existence of TDP kinase in animal tissues.  相似文献   

14.
Catalytic properties of Escherichia coli polyphosphate kinase (EC 2.7.4.1), a promising enzyme for use in ATP regeneration (Hoffman, et al., 1988, Biotechnol. Appl. Biochem. 10, 107-117), are reported here. E. coli polyphosphate kinase (PPK) is broadly active in the pH range 5.5 to 8.5, having an optimal Vmax at pH 7.2. The Km values for the substrates, ADP and polyphosphate (Pn), change little in the same pH range. The optimal concentration range for the Mg2+ activator is 1-20 mM, with an activity maximum at 10 mM Mg2+. In addition to Mg2+, Mn2+ and Co2+ can serve as activators of E. coli PPK, whereas Zn2+ and Cu2+ are highly inhibitory. E. coli PPK is most active with Pn substrates of chain length greater than 132 phosphoryl units. The enzyme activity decreases with decreasing Pn chain length and approaches zero (less than 1%) at a chain length less than or equal to 5. Equilibrium yields of ATP of greater than 85% are readily attained at substrate concentrations below 1 mM. An operational equilibrium constant for the PPK reaction, defined as [ATP]/[ADP][Pn], was determined to be 7.5 (+/- 3.4) x 10(5) M-1. The data presented here serve as a base of information from which assessments of the suitability of E. coli PPK for specific ATP regeneration applications can be made.  相似文献   

15.
Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (phosphatidylethanolamine) [corrected] and GPCho (phosphatidylcholine) [corrected] . Ethanolamine is also found as an integral component of the GPI (glycosylphosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway. Database mining revealed two putative C/EKs (choline/ethanolamine kinases) in the Trypanosoma brucei genome, which were cloned, overexpressed, purified and characterized. TbEK1 (T. brucei ethanolamine kinase 1) was shown to be catalytically active as an ethanolamine-specific kinase, i.e. it had no choline kinase activity. The K(m) values for ethanolamine and ATP were found to be 18.4+/-0.9 and 219+/-29 microM respectively. TbC/EK2 (T. brucei choline/ethanolamine kinase 2), on the other hand, was found to be able to phosphorylate both ethanolamine and choline, even though choline was the preferred substrate, with a K(m) 80 times lower than that of ethanolamine. The K(m) values for choline, ethanolamine and ATP were 31.4+/-2.6 microM, 2.56+/-0.31 mM and 20.6+/-1.96 microM respectively. Further substrate specificity analysis revealed that both TbEK1 and TbC/EK2 were able to tolerate various modifications at the amino group, with the exception of a quaternary amine for TbEK1 (choline) and a primary amine for TbC/EK2 (ethanolamine). Both enzymes recognized analogues with substituents on C-2, but substitutions on C-1 and elongations of the carbon chain were not well tolerated.  相似文献   

16.
Choline kinase of rat brain was purified approximately 200,000 fold using acid precipitation, ammonium sulphate fractionation, Q-Sepharose, Octyl-Sepharose and AH-Sepharose chromatography. The ability of this enzyme to catalyze the phosphorylation of choline, ethanolamine (Etn), monomethylethanolamine (MeEtn), dimethylethanolamine (Me2Etn) and sphingosine was investigated. Choline kinase was separated from sphingosine kinase. The fraction with highly purified choline kinase had four major polypeptides with different molecular masses and possessed activities towards choline, Etn, MeEtn and Me2Etn. Two forms of choline kinase were obtained when the enzymatically active fractions eluted from the Q-Sepharose column were subjected to a horizontal isoelectrofocusing electrophoresis. One form focused around pH 4.7 and is able to phosphorylate choline, Etn, MeEtn and Me2Etn. The other form focused around pH 10 and possessed only choline kinase activity. The latter form of choline kinase did not display classical Michaelis-Menten's mechanism but revealed a positive co-operative pattern for two choline binding sites. This form was purified to apparent homogeneity with a approximate molecular mass of 14.4 kDa.Abbreviations Etn ethanolamine - MeEtn N-monomethylethanolamine - Me2Etn N, N-dimethylethanolamine  相似文献   

17.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart.  相似文献   

18.
Two protein kinases (I and II: EC 2.7.1.37) that show a high degree of substrate specificity for protamine rather than histones, phosvitin and casein were partly purified from rat epididymal tissue. The enzymes were present in the cytosol because greater than 80% of the enzymic activity was recovered in the soluble fraction. The kinases required Mg2+ for activity although Co2+ and Mn2+ were partial substitutes. Zn2+ (1 mM) inhibited nearly completely the activity of the enzymes. Both the kinases showed high affinity for activation with cyclic AMP compared to other cyclic nucleotides. Amino acid analysis of 32P-labelled protamine product revealed that the kinases transfer the terminal phosphate of ATP to serine residues of the protein. The isoenzymes I and II showed certain differences in relation to their hydroxyapatite-chromatography profiles, pH activation profiles, heat sensitivity and Km for ATP and cyclic AMP.  相似文献   

19.
Two protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) were detected in disrupted cilia of Paramecium tetraurelia. One of the enzymes exhibited maximum activity at pH 6.0, required 4 mM Mg2+ for its maximum activity and was stimulated by cyclic AMP and cyclic GMP. Histone was a good exogenous protein substrate for this enzyme, but protamine sulfate was not. The other protein kinase showed a peak of activity at pH 8.0, required 10 mM Mg2+ for its maximum activity and was slightly inhibited by cyclic AMP and cyclic GMP. Protamine sulfate was a good exogenous substrate for this enzyme. The pH 8.0 activity partitioned preferentially with the axonemes, but the pH 6.0 activity was divided almost equally between the axonemes and the membranes. We also found indirect evidence for the presence in cilia of phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) and adenyl cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity.  相似文献   

20.
The properties of adenylate kinase in 2 ADP in equilibrium ATP + AMP reaction have been studied. The dependence of the enzyme activity on medium pH, protein concentration, substrates, Mg++ ions, AMP, adenine and adenosine has been also investigated. pH optimum is found to be 8.5 for forward reaction and 8-9--for the reverse one. The Michaelis constants are as follows: for ADP--1.17-10(-4) M, for ATP--3.33-10(-4) M at 24 degrees C, in 50 mM tris-HCl pH 7.6. The optimal ratio, Mg++ ions/substrates (ADP, ATP + AMP), is 1:2. The chelates of adenine nucleotides with Mg++ ions are proved to be "true" reaction substrates. Unlike adenine and adenosine, the product of AMP reaction inhibits adenylate kinase activity. It is concluded that the properties of adenylate kinase in plants are similar to those of animals and humans (moikinase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号