首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
    
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein superfamily. Serpins are unique in that their native forms are not the most thermodynamically stable conformation; instead, a more stable, latent conformation exists. During the transition to the latent form, the first strand of beta-sheet C (s1C) in the serpin is peeled away from the beta-sheet, and the reactive center loop (RCL) is inserted into beta-sheet A, rendering the serpin inactive. To elucidate the contribution of specific interactions in the metastable native form to the latency transition, we examined the effect of mutations at the s1C of PAI-1, specifically in positions P4' through P10'. Several mutations strengthened the interactions between these residues and the core protein, and slowed the transition of the protein from the metastable native form to the latent form. In particular, anchoring of the strand to the protein's hydrophobic core at the beginning (P4' site) and center of the strand (P8' site) greatly retarded the latency transition. Mutations that weakened the interactions at the s1C region facilitated the conformational conversion of the protein to the latent form. PAI-1's overall structural stability was largely unchanged by the mutations, as evaluated by urea-induced equilibrium unfolding monitored via fluorescence emission. Therefore, the mutations likely exerted their effects by modulating the height of the energy barrier from the native to the latent form. Our results show that interactions found only in the metastable native form of serpins are important structural features that attenuate folding of the proteins into their latent forms.  相似文献   

2.
    
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization.  相似文献   

3.
The TGN-localised, type I integral membrane protein TGN38 has previously been suggested to play a role as a cargo transporter within mammalian cells. We have undertaken a series of experiments designed to address this hypothesis, and, in so doing, have partially characterised the glycosylation status of the lumenal domain of TGN38. We find that elevated expression of different regions of the lumenal domain of TGN38 has no reproducible effect on secretion from stably transfected NRK cells expressing the different lumenal domain constructs; neither does it affect the gross morphology of organelles of the secretory and endocytic pathways. However, we observed that, whilst elevated expression of full-length TGN38 in stably transfected NRK cells does not have any significant effect on the morphology of organelles of the secretory and endocytic pathways, it does lead to a change in the pattern of protein secretion from these cells. In particular, elevated expression of full-length TGN38 led to increased secretion of a 48-kDa glycoprotein identified as plasminogen activator inhibitor-1.  相似文献   

4.
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:OO p.m. and then dropped to trough levels at 3:00–4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleepfwake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor- 1 (PAL l), show a marked circadian variation in plasma. In contrast, levels of plasminogen, α2-antiplasmin, urinarytype plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAL 1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAL 1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release. products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAL 1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore, to define the 24-h pattern of plasma tPA and PAI- 1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population. In normal conditions, the 24-h variation of plasma tPA and PAI- 1 is not associated with parallel circadian changes in effective fibrinolysis, assessed as plasma D-dimer concentrations, presumably because fibrin generation in the circulation is low. In diseases in which fibrin formation is increased, however, the physiological drop of fibrinolytic activity in the morning hours may favour thrombus development at this time of day, in agreement with the reported higher morning frequency of acute thrombotic events.  相似文献   

5.
The extracellular serine protease tissue plasminogen activator (tPA) that converts plasminogen into plasmin is abundantly expressed throughout the central nervous system. We have recently demonstrated that the tPA-plasmin system participates in the rewarding and locomotor-stimulating effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAc). In the present study, we examined the effects of microinjections of plasminogen activator inhibitor-1 (PAI-1), tPA or plasmin into the NAc on morphine-induced dopamine release, hyperlocomotion and anti-nociceptive effects in ICR mice. A single morphine treatment resulted in an increase in protein levels of PAI-1 in the NAc. Microinjection of PAI-1 into the NAc dose-dependently reduced morphine-induced dopamine release and hyperlocomotion. In contrast, microinjection of tPA into the NAc significantly potentiated morphine-induced dopamine release and hyperlocomotion without affecting basal levels. Furthermore, microinjection of plasmin enhanced morphine-induced dopamine release, but did not modify the hyperlocomotion induced by morphine. The intracerebroventricular injection of PAI-1, tPA and plasmin at high doses had no effect on the anti-nociceptive effects of morphine. These results suggest that the tPA-plasmin system is involved in the regulation of morphine-induced dopamine release and dopamine-dependent behaviors but not the anti-nociceptive effects of morphine.  相似文献   

6.
    
The serine protease inhibitor (serpin), plasminogen activator inhibitor‐1 (PAI‐1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI‐1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI‐1, in which the solvent‐exposed reactive center loop (RCL) inserts into its central β‐sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13‐P5′) to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap‐like RCL‐insertion that occurs with a half‐life of 1–2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half‐life of ~5 and 25 min at the P5′ and P8 RCL positions, respectively. We hypothesize that the process detected at P5′ represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.  相似文献   

7.
目的探讨同型半胱氨酸(Hcy)对纤溶系统的影响,观察Hcy在转录水平对人脐静脉血管内皮细胞(HUVEC)表达组织型纤溶酶原激活物(tPA)和纤溶酶原激活物抑制剂1(PAI1)的影响。方法将体外培养的HUVEC分为生理浓度(10μmol/LHcy)组,病理浓度(50、200、500μmol/L)Hcy组及单纯培养基组(0μmol/LHcy),培养24h后,提取RNA,反转录聚合酶链反应分析(RTPCR)法分析各组tPA及PAI1基因表达水平。结果500μmol/LHcy组与10μmol/LHcy组相比,tPAmRNA基因表达明显下调(P<0.05),PAI1mRNA表达则明显上调(P<0.05)。而与单纯培养基组相比,10μmol/LHcy组tPAmRNA表达明显增高(P<0.05)。结论生理浓度Hcy可以增加纤溶系统活性,减少血栓性疾病的发生。高Hcy(病理浓度)则抑制纤溶系统活性,促进缺血性心脑血管疾病的发生。  相似文献   

8.
    
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.  相似文献   

9.
To characterize the structural requirements for the conformational flexibility in plasminogen activator inhibitor-1 (Pal-1) we have crystallized human PAI-1, carrying a mutation which stabilizes PAI-1 in its substrate form. Crystallization was performed by the hanging drop diffusion method at pH 8.5 in the presence of 19% (w/v) polyethyleneglycol 4000 as a precipitant. The crystals appear after 3 days at 23°C and belong to the monoclinic space group C2 with cell dimensions of a=151.8 Å, b=47.5 Å, c=62.7 Å, and β=113.9°, and one molecule in the asymmetric unit. The X-ray diffraction data set contains data with a limiting resolution of 2.5 Å. Biochemical analysis of the redissolved crystals indicated that during the crystallization process, cleavage had occurred in the active site loop at the P1-P1′ position. The availability of good-quality crystals of the cleaved form of this serpin will allow its three-dimensional structure to be solved and will provide detailed information on the structure-function relationship in PAI-1. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The assessment of target organ damage is important in defining the optimal treatment of hypertension and blood pressure-related cardiovascular disease. The aims of the present study were (1) to investigate candidate biomarkers of target organ damage, osteopontin (OPN) and plasminogen activator inhibitor-1 (PAI-1), in models of malignant hypertension with well characterized end-organ pathology; and (2) to evaluate the effects of chronic treatment with a p38 MAPK inhibitor. Gene expression, plasma concentrations, and renal immunohistochemical localization of OPN and PAI-1 were measured in stroke-prone spontaneously hypertensive rats on a salt–fat diet (SFD SHR-SP) and in spontaneously hypertensive rats receiving Nω-nitro-L-arginine methyl ester (L-NAME SHR). Plasma concentrations of OPN and PAI-1 increased significantly in SFD SHR-SP and L-NAME SHR as compared with controls, (2.5–4.5-fold for OPN and 2.0–9.0-fold for PAI-1). The plasma levels of OPN and PAI-1 were significantly correlated with the urinary excretion of albumin (p<0.0001). Elevations in urinary albumin, plasma OPN and PAI-1 were abolished by chronic treatment (4–8 weeks) with a specific p38 MAPK inhibitor, SB-239063AN. OPN immunoreactivity was localized predominantly in the apical portion of tubule epithelium, while PAI-1 immunoreactivity was robust in glomeruli, tubules and renal artery endothelium. Treatment with the p38 MAPK inhibitor significantly reduced OPN and PAI-1 protein expression in target organs. Kidney gene expression was increased for OPN (4.9- and 7.9-fold) and PAI-1 (2.8- and 11.5-fold) in SFD SHR-SP and L-NAME SHR, respectively. In-silico pathway analysis revealed that activation of p38 MAPK was linked to OPN and PAI-1 via SP1, c-fos and c-jun; suggesting that these pathways may play an important role in p38 MAPK-dependent hypertensive renal dysfunction. The results suggest that enhanced OPN and PAI-1 expression reflects end-organ damage in hypertension and that suppression correlates with end-organ protection regardless of overt antihypertensive action.  相似文献   

11.
    
Plasminogen activator inhibitor type 1 (PAI-1) is an inhibitor of plasminogen activators such as tissue-type plasminogen activator or urokinase-type plasminogen activator. For this molecule, different conformations are known. The inhibiting form that interacts with the proteinases is called the active form. The noninhibitory, noncleavable form is called the latent form. X-ray and modeling studies have revealed a large change in position of the reactive center loop (RCL), responsible for the interaction with the proteinases, that is inserted into a beta-sheet (s4A) in the latent form. The mechanism underlying this spontaneous conformational change (half-life = 2 h at 37 degrees C) is not known in detail. This investigation attempts to predict a transition path from the active to the latent structure at the atomic level, by using simulation techniques. Together with targeted molecular dynamics (TMD), a plausible assumption on a rigid body movement of the RCL was applied to define an initial guess for an intermediate. Different pathways were simulated, from the active to the intermediate, from the intermediate to the latent structure and vice versa under different conditions. Equilibrium simulations at different steps of the path also were performed. The results show that a continuous pathway from the active to the latent structure can be modeled. This study also shows that this approach may be applied in general to model large conformational changes in any kind of protein for which the initial and final three-dimensional structure is known.  相似文献   

12.
In this study we investigated possible differences in fibrinolytic activity in cardiac patients while they performed treadmill and cycle ergometry. Thirteen post-myocardial infarction patients completed two maximal exercise tests on treadmill and cycle ergometers. Blood was collected before and after each exercise test and was analyzed for the fibrinolytic variables, tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activity, and lactate. Maximal oxygen uptake, heart rate, and ventilation were greater (P < 0.05) on the treadmill than during cycle ergometry, however, blood lactate was similar between modes. t-PA activity significantly increased with exercise (P < 0.05) and there was a trend toward a reduction in PAI-1 activity with exercise, but this did not reach statistical significance. The fibrinolytic responses to maximal exercise did not differ between the two modes of exercise studied. Therefore, exercise intensity, but not the mode of exercise, appeared to be the primary determinant of the fibrinolytic response to acute exercise in these patients. Accepted: 29 January 1998  相似文献   

13.
14.
Hepatitis delta virus (HDV) replicates by a double rolling-circle mechanism that requires self-cleavage by closely related genomic and antigenomic versions of a ribozyme. We have previously shown that the uncleaved genomic ribozyme is subject to a variety of alternative (Alt) pairings. Sequence upstream of the ribozyme can regulate self-cleavage activity by formation of an Alt 1 ribozyme-containing structure that severely inhibits self-cleavage, or a P(-1) self-structure that permits rapid self-cleavage. Here, we test three other alternative pairings: Alt P1, Alt 2, and Alt 3. Alt P1 and Alt 3 contain primarily ribozyme-ribozyme interactions, while Alt 2 involves ribozyme-flanking sequence interaction. A number of single and double mutant ribozymes were prepared to increase or decrease the stability of the alternative pairings, and rates of self-cleavage were determined. Results of these experiments were consistent with the existence of the proposed alternative pairings and their ability to inhibit the overall rate of native ribozyme folding. Local misfolds are treated as internal equilibrium constants in a binding polynomial that modulates the intrinsic rate of cleavage. This model of equilibrium effects of misfolds should be general and apply to other ribozymes. All of the alternative pairings sequester a pseudoknot-forming strand. Folding of ribozymes containing Alt P1 and Alt 2 was accelerated by urea as long as the native ribozyme fold was sufficiently stable, while folding of mutants in which both of these alternative pairings had been removed were not stimulated by urea. This behavior suggests that the pseudoknots form by capture of an unfolded or appropriately rearranged alternative pairing by its complementary native strand. Fast-folding mutants were prepared by either weakening alternative pairings or by strengthening native pairings. A kinetic model was developed that accommodates these features and explains the position of the rate-limiting step for the G11C mutant. Implications of these results for structural and dynamic studies of the uncleaved HDV ribozyme are discussed.  相似文献   

15.
纯化了工程细菌表达的可溶态和包含体形式的rhPAI-1,纯度均达98%,其rhPAI-1蛋白质得率分别为15%和19%,比活性分别为33500IU/mg和277000IU/mg。N端氨基酸序列分析显示,rhPAI-1N端15个氨基酸与天然PAI-1完全一致;包含体复性研究表明,包含体的复性与复性蛋白的浓度及复性液中助溶剂的浓度密切相关。纯化的rhPAI-1为分析PAI-1结构与功能及探讨其临床应用提供了材料。  相似文献   

16.
    
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   

17.
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that regulates numerous key cardiovascular functions. High-density lipoproteins (HDLs) are the major plasma lipoprotein carriers of S1P. Fibrinolysis is a physiological process that allows fibrin clot dissolution, and decreased fibrinolytic capacity may result from increased circulating levels of plasminogen activator inhibitor-1 (PAI-1). We examined the effect of S1P associated with HDL subfractions on PAI-1 secretion from 3T3 adipocytes. S1P concentration in HDL3 averaged twice that in HDL2. Incubation of adipocytes with increasing concentrations of S1P in HDL3, but not HDL2, or with S1P complexed to albumin stimulated PAI-I secretion in a concentration-dependent manner. Quantitative RT-PCR revealed that S1P1–3 are expressed in 3T3 adipocytes, with S1P2 expressed in the greatest amount. Treatment of adipocytes with the S1P1 and S1P3 antagonist VPC23019 did not block PAI-1 secretion. Inhibiting S1P2 with JTE-013 or reducing the expression of the gene coding for S1P2 using silencing RNA (siRNA) technology blocked PAI-1 secretion, suggesting that the S1P2 receptor mediates PAI-1 secretion from adipocytes exposed to HDL3 or S1P. Treatment with the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor RO-318425, or the Rho-associated protein kinase (ROCK) inhibitor Y27632 all significantly inhibited HDL3- and S1P-mediated PAI-1 release, suggesting that HDL3- and/or S1P-stimulated PAI-1 secretion from 3T3 cells is mediated by activation of multiple, downstream signaling pathways of S1P2.  相似文献   

18.
    
This study focuses on the phenomenon of kinetic partitioning when a polypeptide chain has two ground-state conformations, one of which is kinetically more reachable than the other. We designed sequences for lattice model proteins with two different conformations of equal energy corresponding to the global energy minimum. Folding simulations revealed that one of these conformations was indeed much more kinetically accessible than the other. We found that the number and strength of local contacts in the ground-state conformation are the major factors that determine which conformation is reached faster; the greater the number of local contacts, the more kinetically reachable a conformation is. We present simple statistical–mechanical arguments to explain these findings. Our results may be relevant in explaining the phenomenology of such proteins as human plasminogen activator inhibitor-1 (PAI-1), photosystem II, and prions. Proteins 31:335–344, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
    
The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.  相似文献   

20.
    
Plasminogen activator inhibitor‐1 (PAI‐1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue‐type and urokinase‐type plasminogen activator (tPA, uPA), affect the fate of PAI‐1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C‐terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N‐terminal RCL is observed upon binding of S195A‐uPA to PAI‐1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI‐1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI‐1 dynamics. Significance : Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号