共查询到20条相似文献,搜索用时 0 毫秒
1.
Single fluorescence probes along the reactive center loop reveal site‐specific changes during the latency transition of PAI‐1 下载免费PDF全文
Tihami Qureshi Cynthia B. Peterson 《Protein science : a publication of the Protein Society》2016,25(2):487-498
The serine protease inhibitor (serpin), plasminogen activator inhibitor‐1 (PAI‐1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI‐1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI‐1, in which the solvent‐exposed reactive center loop (RCL) inserts into its central β‐sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13‐P5′) to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap‐like RCL‐insertion that occurs with a half‐life of 1–2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half‐life of ~5 and 25 min at the P5′ and P8 RCL positions, respectively. We hypothesize that the process detected at P5′ represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition. 相似文献
2.
Specific interactions of serpins in their native forms attenuate their conformational transitions 下载免费PDF全文
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein superfamily. Serpins are unique in that their native forms are not the most thermodynamically stable conformation; instead, a more stable, latent conformation exists. During the transition to the latent form, the first strand of beta-sheet C (s1C) in the serpin is peeled away from the beta-sheet, and the reactive center loop (RCL) is inserted into beta-sheet A, rendering the serpin inactive. To elucidate the contribution of specific interactions in the metastable native form to the latency transition, we examined the effect of mutations at the s1C of PAI-1, specifically in positions P4' through P10'. Several mutations strengthened the interactions between these residues and the core protein, and slowed the transition of the protein from the metastable native form to the latent form. In particular, anchoring of the strand to the protein's hydrophobic core at the beginning (P4' site) and center of the strand (P8' site) greatly retarded the latency transition. Mutations that weakened the interactions at the s1C region facilitated the conformational conversion of the protein to the latent form. PAI-1's overall structural stability was largely unchanged by the mutations, as evaluated by urea-induced equilibrium unfolding monitored via fluorescence emission. Therefore, the mutations likely exerted their effects by modulating the height of the energy barrier from the native to the latent form. Our results show that interactions found only in the metastable native form of serpins are important structural features that attenuate folding of the proteins into their latent forms. 相似文献
3.
To characterize the structural requirements for the conformational flexibility in plasminogen activator inhibitor-1 (Pal-1) we have crystallized human PAI-1, carrying a mutation which stabilizes PAI-1 in its substrate form. Crystallization was performed by the hanging drop diffusion method at pH 8.5 in the presence of 19% (w/v) polyethyleneglycol 4000 as a precipitant. The crystals appear after 3 days at 23°C and belong to the monoclinic space group C2 with cell dimensions of a=151.8 Å, b=47.5 Å, c=62.7 Å, and β=113.9°, and one molecule in the asymmetric unit. The X-ray diffraction data set contains data with a limiting resolution of 2.5 Å. Biochemical analysis of the redissolved crystals indicated that during the crystallization process, cleavage had occurred in the active site loop at the P1-P1′ position. The availability of good-quality crystals of the cleaved form of this serpin will allow its three-dimensional structure to be solved and will provide detailed information on the structure-function relationship in PAI-1. © 1995 Wiley-Liss, Inc. 相似文献
4.
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization. 相似文献
5.
E J Goldsmith C Sheng-Cheng D E Danley R D Gerard K F Geoghegan J Mottonen A Strand 《Proteins》1991,9(3):225-227
Crystals of bacterially expressed plasminogen activator inhibitor (PAI-1) suitable for X-ray diffraction analysis have been obtained from 8% (w/v) PEG 1500, pH 8.25. The space group is P1, and the lattice constants are a = 82.17 A, b = 47.82 A, c = 62.89 A, alpha = 90.00 degrees, beta = 106.90 degrees, gamma = 106.84 degrees. The diffraction limit is 2.3 A, and the unit cell contains two molecules of PAI-1. The crystals contain latent PAI-1 which can be partly reactivated by exposure to denaturants. 相似文献
6.
7.
S. S. Nerurkar A. R. Olzinski K. S. Frazier R. C. Mirabile S. P. O'Brien J. Jing 《Biomarkers》2013,18(1):87-112
The assessment of target organ damage is important in defining the optimal treatment of hypertension and blood pressure-related cardiovascular disease. The aims of the present study were (1) to investigate candidate biomarkers of target organ damage, osteopontin (OPN) and plasminogen activator inhibitor-1 (PAI-1), in models of malignant hypertension with well characterized end-organ pathology; and (2) to evaluate the effects of chronic treatment with a p38 MAPK inhibitor. Gene expression, plasma concentrations, and renal immunohistochemical localization of OPN and PAI-1 were measured in stroke-prone spontaneously hypertensive rats on a salt–fat diet (SFD SHR-SP) and in spontaneously hypertensive rats receiving Nω-nitro-L-arginine methyl ester (L-NAME SHR). Plasma concentrations of OPN and PAI-1 increased significantly in SFD SHR-SP and L-NAME SHR as compared with controls, (2.5–4.5-fold for OPN and 2.0–9.0-fold for PAI-1). The plasma levels of OPN and PAI-1 were significantly correlated with the urinary excretion of albumin (p<0.0001). Elevations in urinary albumin, plasma OPN and PAI-1 were abolished by chronic treatment (4–8 weeks) with a specific p38 MAPK inhibitor, SB-239063AN. OPN immunoreactivity was localized predominantly in the apical portion of tubule epithelium, while PAI-1 immunoreactivity was robust in glomeruli, tubules and renal artery endothelium. Treatment with the p38 MAPK inhibitor significantly reduced OPN and PAI-1 protein expression in target organs. Kidney gene expression was increased for OPN (4.9- and 7.9-fold) and PAI-1 (2.8- and 11.5-fold) in SFD SHR-SP and L-NAME SHR, respectively. In-silico pathway analysis revealed that activation of p38 MAPK was linked to OPN and PAI-1 via SP1, c-fos and c-jun; suggesting that these pathways may play an important role in p38 MAPK-dependent hypertensive renal dysfunction. The results suggest that enhanced OPN and PAI-1 expression reflects end-organ damage in hypertension and that suppression correlates with end-organ protection regardless of overt antihypertensive action. 相似文献
8.
Heme oxygenase-1 (HO-1) responds to a variety of oxidative stresses. We examined whether HO-1 expression influences pro-thrombotic processes, in which the involvement of oxidative stress has been reported. Since HO-1 knockout mice with a C57/BL6J background were not viable, embryonic cells from HO-1 deficient mice (E11.5) were used. Cell viability, the level of plasminogen activator inhibitor-1 (PAI-1) expression and reactive oxygen species (ROS) generation of HO-1 deficient cells in response to the exposures to hydrogen peroxide and oxidized LDL were compared to those with wild-type cells. We also examined the effects of glutathione (GSH), desferrioxamine (DFO) and diphenyleneiodonium (DPI: an NADPH oxidase inhibitor) as well as of the HO reaction products, bilirubin (BR) and carbon monoxide (CO) on PAI-1 expression and ROS generation. PAI-1 expression and ROS generation were markedly elevated in HO-1 deficient cells compared to wild-type cells. Exposure to oxidized LDL significantly elevated PAI-1 expression and ROS production in HO-1 deficient cells. Interestingly, these increases in HO-1 deficient cells were significantly lowered by BR, CO, GSH and DPI while DFO had little effect. Furthermore, BR and CO were effective to improve viabilities of HO-1 deficient cells. These results suggest that HO-1 may be required to suppress ROS generation and the production of pro-thrombotic molecules such as PAI-1. 相似文献
9.
10.
The conversion of active to latent plasminogen activator inhibitor-1 is an energetically silent event 下载免费PDF全文
PAI-1 is a proteinase inhibitor, which plays a key role in the regulation of fibrinolysis. It belongs to the serpins, a family of proteins that behave either as proteinase inhibitors or proteinase substrates, both reactions involving limited proteolysis of the reactive center loop and insertion of part of this loop into beta-sheet A. Titration calorimetry shows that the inhibition of tissue-type plasminogen and pancreatic trypsin are exothermic reactions with DeltaH = -20.3, and -22.5 kcal.mol(-1), respectively. The Pseudomonas aeruginosa elastase-catalyzed reactive center loop cleavage and inactivation of the inhibitor is also exothermic (DeltaH = -38.9 kcal.mol(-1)). The bacterial elastase also hydrolyses peptide-bound PAI-1 in which acetyl-TVASSSTA, the octapeptide corresponding to the P(14)-P(7) sequence of the reactive center loop is inserted into beta-sheet A of the serpin with DeltaH = -4.0 kcal.mol(-1). In contrast, DeltaH = 0 for the spontaneous conversion of the metastable active PAI-1 molecule into its thermodynamically stable inactive (latent) conformer although this conversion also involves loop/sheet insertion. We conclude that the active to latent transition of PAI-1 is an entirely entropy-driven phenomenon. 相似文献
11.
Anisuzzaman Khyrul Islam M Abdul Alim M Miyoshi T Hatta T Yamaji K Matsumoto Y Fujisaki K Tsuji N 《Biochemical and biophysical research communications》2011,(4):599-604
Thrombo-occlusive diseases are major causes of morbidity and mortality, and tissue-type plasminogen activator (t-PA) is recommended for the treatment of the maladies. However, both t-PA and u-PA are rapidly inactivated by plasminogen activator inhibitor-1 (PAI-1). Here, we show that longistatin, a novel plasminogen activator isolated from the ixodid tick, Haemaphysalis longicornis is resistant to PAI-1. Longistatin was relatively less susceptible to the inhibitory effect of SDS-treated platelet lysate than physiologic PAs. Platelet lysate inhibited t-PA and tcu-PA with the IC50 of 7.7 and 9.1 μg/ml, respectively, whereas for longistatin inhibition IC50 was 20.1 μg/ml (p < 0.01). Similarly, activated PAI-1 (20 nM) inhibited only 21.47% activity of longistatin but almost completely inhibited t-PA (99.17%) and tcu-PA (96.84%). Interestingly, longistatin retained 76.73% initial activity even after 3 h of incubation with 20 nM of PAI-1. IC50 of PAI-1 during longistatin inhibition was 88.3 nM while it was 3.9 and 3.2 nM in t-PA and tcu-PA inhibition, respectively. Longistatin completely hydrolyzed fibrin clot by activating plasminogen efficiently in the presence of 20 nM of PAI-1. Importantly, unlike t-PA, longistatin did not form complex with PAI-1. Collectively, our results suggest that longistatin is resistant to PAI-1 and maybe an interesting tool for the development of a PAI-1 resistant effective thrombolytic agent. 相似文献
12.
Mi-Hye Lee Samar M. Hammad Andrea J. Semler Louis M. Luttrell Maria F. Lopes-Virella Richard L. Klein 《Journal of lipid research》2010,51(9):2619-2628
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that regulates numerous key cardiovascular functions. High-density lipoproteins (HDLs) are the major plasma lipoprotein carriers of S1P. Fibrinolysis is a physiological process that allows fibrin clot dissolution, and decreased fibrinolytic capacity may result from increased circulating levels of plasminogen activator inhibitor-1 (PAI-1). We examined the effect of S1P associated with HDL subfractions on PAI-1 secretion from 3T3 adipocytes. S1P concentration in HDL3 averaged twice that in HDL2. Incubation of adipocytes with increasing concentrations of S1P in HDL3, but not HDL2, or with S1P complexed to albumin stimulated PAI-I secretion in a concentration-dependent manner. Quantitative RT-PCR revealed that S1P1–3 are expressed in 3T3 adipocytes, with S1P2 expressed in the greatest amount. Treatment of adipocytes with the S1P1 and S1P3 antagonist VPC23019 did not block PAI-1 secretion. Inhibiting S1P2 with JTE-013 or reducing the expression of the gene coding for S1P2 using silencing RNA (siRNA) technology blocked PAI-1 secretion, suggesting that the S1P2 receptor mediates PAI-1 secretion from adipocytes exposed to HDL3 or S1P. Treatment with the phospholipase C (PLC) inhibitor , the protein kinase C (PKC) inhibitor RO-318425, or the Rho-associated protein kinase (ROCK) inhibitor Y27632 all significantly inhibited HDL3- and S1P-mediated PAI-1 release, suggesting that HDL3- and/or S1P-stimulated PAI-1 secretion from 3T3 cells is mediated by activation of multiple, downstream signaling pathways of S1P2. U73122相似文献
13.
Distinct encounter complexes of PAI‐1 with plasminogen activators and vitronectin revealed by changes in the conformation and dynamics of the reactive center loop 下载免费PDF全文
Tihami Qureshi Sumit Goswami Carlee S. McClintock Matthew T. Ramsey Cynthia B. Peterson 《Protein science : a publication of the Protein Society》2016,25(2):499-510
Plasminogen activator inhibitor‐1 (PAI‐1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue‐type and urokinase‐type plasminogen activator (tPA, uPA), affect the fate of PAI‐1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C‐terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N‐terminal RCL is observed upon binding of S195A‐uPA to PAI‐1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI‐1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI‐1 dynamics. Significance : Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity. 相似文献
14.
Extending the capabilities of targeted molecular dynamics: simulation of a large conformational transition in plasminogen activator inhibitor 1 下载免费PDF全文
Krüger P Verheyden S Declerck PJ Engelborghs Y 《Protein science : a publication of the Protein Society》2001,10(4):798-808
Plasminogen activator inhibitor type 1 (PAI-1) is an inhibitor of plasminogen activators such as tissue-type plasminogen activator or urokinase-type plasminogen activator. For this molecule, different conformations are known. The inhibiting form that interacts with the proteinases is called the active form. The noninhibitory, noncleavable form is called the latent form. X-ray and modeling studies have revealed a large change in position of the reactive center loop (RCL), responsible for the interaction with the proteinases, that is inserted into a beta-sheet (s4A) in the latent form. The mechanism underlying this spontaneous conformational change (half-life = 2 h at 37 degrees C) is not known in detail. This investigation attempts to predict a transition path from the active to the latent structure at the atomic level, by using simulation techniques. Together with targeted molecular dynamics (TMD), a plausible assumption on a rigid body movement of the RCL was applied to define an initial guess for an intermediate. Different pathways were simulated, from the active to the intermediate, from the intermediate to the latent structure and vice versa under different conditions. Equilibrium simulations at different steps of the path also were performed. The results show that a continuous pathway from the active to the latent structure can be modeled. This study also shows that this approach may be applied in general to model large conformational changes in any kind of protein for which the initial and final three-dimensional structure is known. 相似文献
15.
Katsutaka Oishi Naoki Ohkura Yuki Yasumoto Saori Yamamoto 《Chronobiology international》2017,34(2):254-259
To evaluate the involvement of the day-night feeding cycle in the circadian regulation of circulating plasminogen activator inhibitor-1 (PAI-1) concentrations, mice were fed with a diet for eight hours during either daytime (DF) or nighttime (NF) for one week. The reversed feeding cycle did not affect the circadian phases of plasma PAI-1 levels as well as the nocturnal wheel-running activity, although the phase of Pai-1 mRNA expression was significantly advanced for 8.6 hours in the livers of DF, compared with NF mice. The day-night feeding cycle is not a critical Zeitgeber for circadian rhythm of circulating PAI-1. 相似文献
16.
Yoshimasa Takafuji Kohei Tatsumi Masayoshi Ishida Naoyuki Kawao Kiyotaka Okada Osamu Matsuo Hiroshi Kaji 《Journal of cellular physiology》2019,234(6):9687-9697
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice. 相似文献
17.
Sujana Katta Shivani Vadapalli B. K. S. Sastry Pratibha Nallari 《Indian journal of human genetics》2008,14(2):37-40
AIM:
The aim of the present study was to identify the possible genotypic association of 3’UTR Hind III polymorphism of Plasminogen activator Inhibitor-1 (PAI-1) gene with idiopathic pulmonary arterial hypertension (IPAH).BACKGROUND:
IPAH is a disorder with abnormally raised mean pulmonary arterial pressure and increase in the resistance to blood flow in pulmonary artery. One of the pathological features seen is development of intraluminal thrombin deposition leading to thrombosis. Plasminogen activator inhibitor-1 is an important inhibitor of the fibrinolytic system; its up-regulation may suppress fibrinolysis and result in an increased risk of thrombosis.METHOD:
Blood samples from 54 IPAH patients and 100 healthy voluntary donors were analyzed by PCR-RFLP method for 3’UTR Hind III polymorphism.RESULTS AND DISSCUSSION:
A significant association of Hd2 allele with the disease was observed. Raised mean level of right ventricular systolic pressure was observed in the Hd2/Hd2 genotypic patients, strengthening the role of Hd2 allele in the disease progression. Our data suggests an association of Hd2/Hd2 genotype, which may lead to the up-regulation of PAI-1 gene leading to increased levels of PAI-1, which is seen in IPAH. PAI-1 competes with plasminogen activators and hinders the normal mechanism of plasminogen activation system and leads to thrombosis and formation of plexiform lesions in the lung tissue, further strengthening its role in tissue remodeling and disease progression. 相似文献18.
Advanced glycation end products (AGEs) play an important role in vascular complications of diabetes, including fibrinolytic abnormalities.Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARΥ) agonist, has recently been shown to reduce circulating plasminogen activator inhibitor-1 (PAI-1) levels in diabetes mellitus. In the present study, we investigated the effects of pioglitazone on the expression of local PAI-1 in rat vascular smooth muscle cells (VSMCs) induced by AGEs and the underlying mechanism. The result showed that AGEs could enhance the PAI-1 expression by 5.1-fold in mRNA and 2.7-fold in protein level, as evaluated by real-time RT-PCR and Western blotting,respectively. Pioglitazone was found to down-regulate the AGE-stimulated PAI-1 expression in VSMCs. However, these inhibitory effects were partially attenuated by the PPARΥ antagonist, GW9662. Furthermore, we found that AGEs induced a rapid increase in phosphorylation and activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2). The ERK kinase inhibitor, UO126, partially prevented the induction of PAI-1 by AGEs. Moreover, pioglitazone was also found to inhibit the phosphorylation of ERKi/2. Taken together, it was concluded that pioglitazone could inhibit AGE-induced PAI-1 expression, which was mediated by the ERK1/2 and PPARΥ pathways. Our findings suggestedpioglitazone had a therapeutic potential in improving fibrinolytic activity, and consequently preventing thromboembolic complications of diabetes and cardiovascular disease. 相似文献
19.
De Taeye B Gils A Vleugels N Rabijns A Declerck PJ 《Biochemical and biophysical research communications》2004,321(3):746-751
PAI-1, the physiological inhibitor of tissue-type and urokinase-type plasminogen activator, is a unique member of the serpins as it exists in three distinct conformations: an active inhibitory conformation, a non-inhibitory substrate conformation, and a non-reactive latent conformation. Proline substitution of single residues in the P16-P20 region (situated at the proximal hinge of the reactive site loop) of wild-type PAI-1 (wtPAI-1) and a stabilized PAI-1-variant (PAI-1-stab; N150H, K154T, Q301P, Q319L, and M354I, t(1/2)=150), respectively, resulted in two series of PAI-1-variants with different properties. In wtPAI-1 only substitution at P18 resulted in a pronounced u-PA specificity and substrate behaviour towards t-PA. In contrast, in PAI-1-stab substitution at either P18, P19 or P20 resulted in a u-PA specificity and a significantly increased substrate behaviour towards t-PA and u-PA. Importantly, analysis of the kinetics of inhibition did not reveal any differences in the second-order rate constants of inhibition (k approximately 10(7)M(-1)s(-1)). The pronounced differences observed for identical mutations in wtPAI-1 vs PAI-1-stab demonstrate that not merely the sequence of the reactive loop but also intramolecular interactions between the hF/s3A-loop and the main part of the molecule govern the functional and conformational behaviour of PAI-1. 相似文献
20.
Glucose upregulates plasminogen activator inhibitor-1 gene expression in vascular smooth muscle cells 总被引:8,自引:0,他引:8
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes. 相似文献