首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, Φ′ values were estimated at 3.71–4.17 for B. humilis and 3.70–4.14 for B. tanapelagius, respectively. Values for B. humilis were confirmed in pond experiments. Mean biomass of the small barbs was 13.3 kg fresh wt ha−1, with B. humilis being most abundant in the littoral and sub-littoral zones, whereas B. tanapelagius was most abundant in the sub-littoral and pelagic zones. The two small barbs had a production of 53 kg fresh wt ha−1 year−1. Although their P/B ratios of about 4.0 were relatively high for small cyprinids, both their biomass and production were low in comparison with other small fish taxa in other tropical lakes. Of the zooplankton production only about 29% was consumed by the small barbs. However, they did not utilize calanoid copepods, which were responsible for approximately 57% of the zooplankton production and it is likely that small barb production was food limited during certain periods of the year. Piscivorous labeobarbs consumed about 56% of the small barbs production annually, but additionally, Clarias gariepinus, and many bird species were also preying on them. Therefore, limitation of Barbus production by predation during certain periods in the year cannot be excluded.  相似文献   

2.
3.
Four species of small barbs (Barbus, subgenus Enteromius Cope, 1869) are known from Lake Tana, isolated in the Ethiopian highlands: B. humilis, B. trispilopleura, B. pleurogramma (all Boulenger, 1902) and B. tanapelagius de Graaf, 2000. However, only three species appear valid from cluster analysis using 32 morphometric characters and taking specimens from different locations in the southern Gulf of Lake Tana during August–October 1999. B. humilis and B. trispilopleura significantly differ from B. tanapelagius and B. pleurogramma in up to 36 characters. However, B. humilis and B. trispilopleura cannot be distinguished from each other by morphometric analysis or by gut contents. Specimens from clear, shallow rocky areas with vegetation have a darker back, will be more susceptible to birds, have significantly higher infection by cestodes, smaller size at first reproduction, lower fecundity, and correspond most to the B. trispilopleura phenotype. Specimens in turbid deeper water without vegetation are most similar to the B. humilis phenotype. We conclude that both species actually are extremes (ecotypes) of a continuum, belonging to a single biological species. The observed variation may well be induced by habitat-dependent predation pressure by birds. The high frequency (57%) of spot numbers intermediate between Boulengers number for B. trispilopleura (3) and for B. humilis (0) demonstrates the continuum best. Pigment spots and colour change in response to aquarium conditions and are in this case no valid taxonomic characters. Both characters may reduce the risk of predation. It is concluded that B. trispilopleura is a synonym of B. humilis. For future research we recommend to use the most appropriate name, B. humilis, for both types.  相似文献   

4.
The infection rate by Ligula intestinalis has been studied in 14 fish species (Varicorhinus beso, Garra dembecha, Labeobarbus intermedius, L. crassibarbis, L. tsanensis, L. megastoma, L. brevicephalus, L. nedgia, L. acutirostris, L. gorgorensis, L. dainellii, L. macrophthalmus, Barbus humilis, and B. tanapelagius) from Lake Tana (Ethiopia). Plerocercoids have been found only in the fishes of gg. Labeobarbus and Barbus. Ligula has been found in seven out of ten studied large barbels. Barbels larger than 23 cm are not infected with ligula. It is revealed that a specific “synergism” exists between Ligula intestinalis and cestode Khawia sp. parasitizing the intestine of barbels. This synergism is manifested as a regular cooccurrence of these parasites. In juvenile Labeobarbus, fish coparasitized by Khawia sp. and L. intestinalis occurred more often than fish infected with each of this parasite separately.  相似文献   

5.
Pike Esox lucius larvae captured fewer calanoid and cyclopoid copepods in turbid than in clear water, whereas no differences were detected in feeding rates on Daphnia longispina. Decreased capture of copepods may lead to lower growth and survival of E. lucius larvae in turbid areas, in particular, if cladocerans are scarce.  相似文献   

6.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

7.
Predation by cyclopoid copepods is an important factor affecting zooplankton communities in freshwater habitats. Experiments provide strong evidence of the role of selective predation by cyclopoid copepods in structuring zooplankton communities. To assess the predation impact of a cyclopoid copepod, Mesocyclops pehpeiensis, we conducted a mesocosm experiment using 20-l polyethylene tanks in which the density of the predator and the food available to herbivorous zooplankton varied. M. pehpeiensis had a notable but selective effect on the zooplankton community. The population of a small cladoceran, Bosmina fatalis was affected negatively, but M. pehpeiensis did not have any apparent impact on the population dynamics of another Bosmina species, B. longirostris. On the other hand, the population of small rotifers responded positively to the presence of M. pehpeiensis, and their densities increased in mesocosms with a high density of M. pehpeiensis. It seems that suppression of B. fatalis by M. pehpeiensis predation indirectly affected rotifers by releasing them from competition with B. fatalis. The results suggest that copepod predation is a powerful factor regulating zooplankton communities directly and indirectly.  相似文献   

8.
S. Sendacz 《Hydrobiologia》1984,113(1):121-127
The composition of the zooplankton of the Billings Reservoir and its variation in an eutrophic environment, subject to frequent blooms of algae (chiefly Cyanophyceae) was studied during one year (from October, 1977 to September, 1978) in two stations in the littoral and in the limnetic zone.The zooplankton community in the limnetic zone was dominated by cyclopoid copepods (Thermocyclops crassus and Metacyclops mendocinus) and by rotifers (Brachionus, Polyarthra and others) which represented, respectively 38.5 and 35.5% of the total zooplankton. At the littoral zone, cyclopoids were the most abundant (42.3%).The cladocerans were the least significant group at both stations, and calanoid copepods were found only at the littoral zone.A higher production of small filtrators, such as rotifers, cyclopoid nauplii and Bosmina sp was observed.  相似文献   

9.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

10.
11.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

12.
The forage base and the food selectivity of 0+ representatives of six abundant freshwater fish species were studied in a shallow, eutrophic Dutch lake. Most species relied on the zooplankton; the size-selective predation in early summer was directed to the smaller copepods and in late summer to larger cladocerans and copepods than concurrently present in the lake. Daphnia spp. and cyclopoid copepods were the main zooplankton taxa for smelt, perch and pikeperch. Energetically, the large cladoceran, Leptodora kindtii, was especially important for pikeperch. Bream and roach preyed upon smaller zooplankton than the other fish species. The influence of the zooplankton predation by abundant 0+ fish was clear from a small mean Daphnia size in September; this size is to be used as an indicator in fishery management. Neomysis integer, the most important macrofauna species, was consumed by perch, pikeperch and ruffe; pikeperch was most size-selective in this respect. The 0+ ruffe was à typically benthivorous fish. Only the 0+ pikeperch became piscivorous, especially in years when smelt was abundant.  相似文献   

13.
1. Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities may move further north and the plankton will thus receive less winter light.
2. We followed the changes in the biomass and community structure of zooplankton and phytoplankton in a clear and a turbid shallow lake during winter (November–March) in enclosures both with and without fish and with four different light treatments (100%, 55%, 7% and <1% of incoming light).
3. In both lakes total zooplankton biomass and chlorophyll- a were influenced by light availability and the presence of fish. Presence of fish irrespective of the light level led to low crustacean biomass, high rotifer biomass and changes in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish.
4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers to cyclopoid copepods in the turbid lake. Light affected the phytoplankton biomass and, to a lesser extent, the phytoplankton community composition and size. However, the fish effect on phytoplankton was overall weak.
5. Our results from typical Danish shallow eutrophic lakes suggest that major changes in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century in an IPCC A2 scenario, while stronger effects may be observed in deep lakes.  相似文献   

14.
1. The seasonal cycle of cyclopoid copepods during and following an approximately 50% reduction in planktivorous fish biomass was studied in shallow, eutrophic Lake Vaeng, Denmark, from 1986 to 1990. 2. The dominant cyclopoid copepods changed from Cyclops vicinus and Mesacyclops leuckarti during 1986–1989 to M. leuckarti and Megacyclops viridis in 1990. The abundance of cyclopoid copepods gradually increased from 1986 to 1988–89, decreased in autumn 1989 and markedly decreased in 1990. 3. The increase in the abundance of cyclopoid copepods from 1986 to 1988 is attributed mainly to the reduction in fish predation pressure, there being no concomitant increase in edible phytoplankton. The appearance of M. viridis in 1990, and the general decrease in cyclopoid copepod density in autumn 1989 and in 1990, are attributed to the appearance of submerged macrophytes. 4. Temperature, predation and availability of edible phytoplankton appear to determine whether C. vicinus or M. leuckarti dominates the cyclopoid copepod population of eutrophic Lake Væng.  相似文献   

15.
We used mesocosms to analyze predation impacts on the prey populations and prey community structures by two cyclopoid copepod species, the larger Mesocyclops pehpeiensis and the smaller Thermocyclops taihokuensis, who coexist with small-sized herbivorous zooplankton species in a fish-abundant lake. The overall predation impact on the prey populations was stronger for Mesocyclops than for Thermocyclops. Mesocyclops had a strong and less selective impact on the rotifer community but a selective impact on the crustaceans. In contrast, Thermocyclops had a selective predation impact on rotifers but a weak and less selective impact on the crustacean community. As a result, the former predator reduced the diversity of the crustacean community but not the rotifer community, while the latter had an opposite impact on the diversities of the two communities. It has been suggested that fish induce development of a zooplankton community dominated by the small-sized zooplankton species in fish-abundant lakes. Our results demonstrated that cyclopoid copepods altered species composition and diversity of the small-sized zooplankton community in such lakes. Thus, the results have given an important suggestion on the role of the invertebrate predator cyclopoid copepods, which often coexist with fish, that they determine population dynamics and community structures of small-sized zooplankton in fish-abundant lakes.  相似文献   

16.
The interactions between the higher trophic levels in a shallow eutrophic lake were studied during the course of a year. Three fish species determined the main pathways of organic matter flow within the system: the predominantly planktivorous bream (Abramis brama), the obligate planktivorous smelt (Osmerus eperlanus), and the piscivorous pikeperch (Stizostedion lucioperca). Of the thirteen common zooplankton taxa Daphnia hyalina and cyclopoid copepods were utilized most by the planktivorous fish, while the large production of small cladocerans is almost left unutilized.The seasonal variations of production and consumption are large. This is mainly affected by seasonal variation of the water temperature. The production of O + smelt is efficiently utilized by the pikeperch. Being the most important zooplankton consumer, as well as the most important prey group, O + fish plays a key role in the Tjeukemeer food web.  相似文献   

17.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

18.
1. Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. 2. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91‐m depth sites in northern Lake Huron, U.S.A., for each month, May–October 2007. Daily consumption was compared to daily zooplankton production. 3. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant – eating only 3% of all zooplankton consumed. 4. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. 5. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi‐, meta‐ and hypolimnion, leaving limited refuge for zooplankton prey.  相似文献   

19.
  1. Although considered a key functional trait, little is known about how zooplankton feeding mode affects top‐down regulation of phytoplankton communities. Indeed, copepods are expected to promote the dominance of toxic phytoplankton by selective removal of their edible competitors; however, empirical evidence comparing the effect among calanoid and cyclopoid copepods is lacking.
  2. We compared the top‐down effects of two copepods with contrasting feeding modes—the calanoid Notodiaptomus iheringi (current feeder) and the cyclopoid Thermocyclops decipiens (ambush feeder) — on the relative and absolute biomass of the filamentous cyanobacterium Raphidiopsis raciborskii co‐cultured with the nutritious eukaryotic phytoplankton Cryptomonas obovata in a week‐long laboratory assay.
  3. The current feeder had a stronger top‐down effect on the biomass of both prey throughout the experiment, with mass‐specific clearance rates 3–5× higher than ambush feeder. By the end of the experiment, the current feeder significantly reduced cyanobacteria biomass compared to controls while the ambush feeder did not. During the week‐long experiment, the current feeder switched from grazing on edible prey to cyanobacteria as the former became less abundant.
  4. Contrary to expectation, neither of the copepod species promoted cyanobacterial dominance by the end of the experiment. This is because both grazers, but especially the current feeder, initially increased but subsequently decreased the relative contribution of cyanobacteria to total phytoplankton biomass. Moreover, both copepods decreased the length of cyanobacteria filaments by c. 70%
  5. Current feeders can switch from edible prey to cyanobacteria when the abundance of shortened filaments surpasses the abundance of edible prey. While top‐down regulation of phytoplankton can be stronger for current feeding copepods, ambush feeding copepods can have a significant role during blooms by shortening cyanobacterial filaments. Hence, the broader role of contrasting copepod feeding traits on phytoplankton communities merits further study.
  相似文献   

20.
Three C18 fatty acids were assayed for their activity against a number of algae and zooplankton. The three acids, lenolenic, lenoleic, and oleic, reduced the growth of Haematococcus lacustris, Synechococcus leopoliensis, and Botrydiopsis alpina by 50% of control growth in concentrations below 7 ppm. Calanoid and cyclopoid copepods in mixed cultures inoculated with lenolenic and lenoleic acid had LD50 values below 10 ppm. An increase in copepod mortality was observed with increases in cyclopoid density and decreased with increases in calanoid density. Eucyclops agilis inoculated with lenolenic acid had a LD50 value of 4 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号