首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Immunochemical studies on myosin. II. Cardiac myosin   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
4.
5.
Substructure of the myosin molecule. II. The light chains of myosin   总被引:30,自引:0,他引:30  
  相似文献   

6.
Recently, one of the authors (K.I.) and other investigators reported that myosin light chain (MLC) of smooth muscle (gizzard, arterial and tracheal) was diphosphorylated by myosin light chain kinase (MLCK) and that diphosphorylated myosin showed a marked increase in the actin-activated myosin ATPase activity in vitro and ex vivo. In this study, we prepared myosin, actin, tropomyosin (human platelet), MLCK (chicken gizzard) and calmodulin (bovine brain) and demonstrated diphosphorylation of MLC of platelet by MLCK in vitro. Our results are as follows. (1) Platelet MLC was diphosphorylated by a relatively high concentration (greater than 20 micrograms/ml) of MLCK in vitro. As a result of diphosphorylation, the actin-activated myosin ATPase activity was increased 3 to 4-fold as compared to the monophosphorylation. (2) Both di- and monophosphorylation reactions showed similar Ca2+, KCl, MgCl2-dependence. Maximal reaction was seen at [Ca2+] greater than 10(-6) M, 60 mM KCl and 2 mM MgCl2. This condition was physiological in activated platelets. (3) Di- and monophosphorylated myosin showed similar Ca2+, KCl-dependence of ATPase activity but distinct MgCl2-dependence. Diphosphorylated myosin showed maximal ATPase activity at 2 mM MgCl2 and monophosphorylated myosin showed a maximum at 10 mM MgCl2. (4) The addition of tropomyosin stimulated actin-activated ATPase activity in both di- and monophosphorylated myosin to the same degree. (5) ML-9, a relatively specific inhibitor of MLCK, inhibited the aggregation of human platelets induced by thrombin ex vivo in a dose-dependent manner. Moreover, this drug also partially inhibited both di- and monophosphorylation reactions and actin-activated ATPase activity. On the other hand, H-7, a synthetic inhibitor of protein kinase C, had little effect on the aggregation of human platelets induced by thrombin ex vivo. From these results, we conclude that diphosphorylation of platelet myosin by MLCK may play an important role in activated platelets in vivo.  相似文献   

7.
Unshadowed myosin molecules: STEM mass-maps of myosin heads.   总被引:2,自引:0,他引:2       下载免费PDF全文
Myosin molecules were directly visualized without heavy metal shadowing by scanning transmission electron microscopy (STEM) under low dose conditions. The general appearance and dimensions of heavy metal-free molecules were similar to those of shadowed myosin, either after freeze-drying without or air-drying with glycerol. Two characteristic configurations of myosin head regions were found, a first type showing two pear-shaped heads with narrow necks and a second type showing two heads connected by an extra mass in the central regulatory domain where the light chains are located. The mass of the latter type (mol. wt. = 265 +/- 39 kd) is in excellent accordance with biochemical data whereas the mass of the first type is somewhat lower (mol. wt. 219 +/- 44 kd).  相似文献   

8.
9.
Native myosin has two globular regions attached to an a-helical rod. Papain is able to cleave the globular “heads” from the rod, leading to the formation of a variety of single-headed molecules. Among these subfragments are isolated globules (HMM S-1) and single globules attached to helical rods of lengths varying from 500 to 1400 Å. These subfragments can be separated from the other products of the proteolytic digestion by salt elution from a DEAE-cellulose column. Some of the properties of single-headed heavy meromyosin and myosin have been determined by hydrodynamic methods, and shadow-cast preparations of these subfragments have been directly visualized by electron microscopy. In addition to providing further evidence for the presence of two similar halves in myosin, these new subfragments can be used in studies related to the question of why myosin has two active “heads”.  相似文献   

10.
11.
12.
13.
14.
Macromolecular assemblies of myosin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The self-assembly of myosin into filamentous structures is a highly cooperative and rapid process. Nevertheless, the presence of nonequivalent bonding interactions within the filament permits differential stabilization of several macromolecular assemblies of myosin under well-controlled ionic conditions in citrate/Tris buffer at pH 8.0. We have detected and characterized bipolar myosin minifilaments, myosin octamers, and tetramers by using light scattering, analytical ultracentrifugation, and viscosity techniques. These structures have molecular weights of 8.0 X 10(6), 3.9 X 10(6) g/mol, sedimentation coefficients of 32S, 22S, and 18S, and radii of gyration of 990 A, 890 A and 790, A, respectively. The similar radii of gyration indicate similar bipolar geometry for all these particles. The 32S minifilaments in 10 mM citrate/Tris buffer (pH 8.0) are the most stable species. The smaller 18S and 22S assemblies in 2 mM and 5 mM citrate/Tris, pH 8.0, are readily affected by low concentrations of KCl and fuse into the minifilament particles. The instability of the 18S and 22S forms of myosin assembly is also revealed by their titration with ATP. These structures are dissociated at lower ATP concentrations than the minifilaments and do not show the cooperative dissociation transitions characteristic of filaments and minifilaments. Sedimentation velocity analysis of the 18S and 22S species in the presence of ATP reveals the involvement of 10S myosin dimer in the dissociation of assembled myosin. The different forms of assembled myosin are discussed in the context of formation of myosin minifilaments.  相似文献   

15.
Phosphorylation of fibroblast myosin.   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
A. Mü  hlrad  K. Ajtai  F. F  bi  n 《BBA》1970,205(3):355-360
The effect of salicylalation on the biological properties of myosin was studied.

1. 1. The ATPase activity of myosin is affected by salicylalation if the treatment is carried out at higher pH than 6.5. The Mg2+-activated ATPase shows a maximal curve with 250–380% maximal activation when 25–70 moles of salicylaldehyde are bound per mole of myosin. The EDTA-activated ATPase decreases with increasing salicylalation. Ca2+-activated ATPase shows a small increase with increasing salicylalation.

2. 2. Less salicylaldehyde is bound if the treatment is carried out in the presence of ATP, while that of PPi does not affect the degree of salicylalation. The enzymic properties of myosins salicylalated in the presence of ATP or PPi are not different from those of the samples treated in their absence.

3. 3. Salicylalation decreases ATP sensitivity of ATPase and superprecipitation of actomyosins reconstituted from salicylalated myosins only if more than 50 moles of salicylaldehyde are bound per mole myosin.

Abbreviations: TBS, 2,4,6-trinitrobenzene sulphonate  相似文献   


18.
The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin.  相似文献   

19.
20.
We have used electron microscopy and solubility measurements to investigate the assembly and structure of purified human platelet myosin and myosin rod into filaments. In buffers with ionic strengths of less than 0.3 M, platelet myosin forms filaments which are remarkable for their small size, being only 320 nm long and 10-11 nm wide in the center of the bare zone. The dimensions of these filaments are not affected greatly by variation of the pH between 7 and 8, variation of the ionic strength between 0.05 and 0.2 M, the presence or absence of 1 mM Mg++ or ATP, or variation of the myosin concentration between 0.05 and 0.7 mg/ml. In 1 mM Ca++ and at pH 6.5 the filaments grow slightly larger. More than 90% of purified platelet myosin molecules assemble into filaments in 0.1 M KC1 at pH 7. Purified preparations of the tail fragment of platelet myosin also form filaments. These filaments are slightly larger than myosin filaments formed under the same conditions, indicating that the size of the myosin filaments may be influenced by some interaction between the head and tail portions of myosin molecules. Calculations based on the size and shape of the myosin filaments, the dimensions of the myosin molecule and analysis of the bare zone reveal that the synthetic platelet myosin filaments consists of 28 myosin molecules arranged in a bipolar array with the heads of two myosin molecules projecting from the backbone of the filament at 14-15 nm intervals. The heads appear to be loosely attached to the backbone by a flexible portion of the myosin tail. Given the concentration of myosin in platelets and the number of myosin molecules per filament, very few of these thin myosin filaments should be present in a thin section of a platelet, even if all of the myosin molecules are aggregated into filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号