首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholic acid uptake was studied in isolated rat hepatocytes using a centrifugal filtration technique to allow rapid sampling. Hepatocytes were found to adsorb as well as to transport cholic acid. The adsorption was characterized by a capacity of 24 nmol X mg cell protein-1 and an association constant of 0.59 X 103 M-1. Cholic acid uptake was linear with respect to concentration at or below 10 degree C, suggesting a unsaturable uptake process which was considered to represent simple diffusion and is quantitated by a diffusion coefficient of 1.76 pmol cholic acid X min-1 X mg protein-1 X muM-1. Above 10 degrees C the uptake curve was biphasic. After subtracting the unsaturable component from uptake rates at higher temperatures, a curve showing saturable kinetics resulted. The apparent Km and V values at 37 degrees C were calculated to be 31muM and 0.8 nmol X min-1 X mg protein-1 respectively. This saturable uptake process was temperature-dependent with an activation energy of 13 kcal X mol-1 (5.44 X 104 J X mol-1) and was inhibited by oligomycin and KCN. Countertransport was demonstrated with cholic, taurocholic and chenodeoxycholic acids. The results suggest that cholic acid is transported by an energy-dependent carrier-mediated process in addition to simple diffusion by hepatocytes, and that the postulated carrier has affinity for other bile acids.  相似文献   

2.
The incorporation of [3H]leucine into soluble cellular protein was measured in isolated hepatocytes at extracellular leucine concentrations ranging from 0.15 to 20.0 mM. Insulin caused a 12--15% stimulation of [3H]leucine incorporation in the presence of high extracellular leucine concentrations. It is concluded that insulin causes a small but significant increase in the rate of hepatic protein synthesis.  相似文献   

3.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

4.
5.
Amino acid transport in isolated rat hepatocytes   总被引:13,自引:0,他引:13  
Summary Improvements in the collagenase perfusion techniques have made isolated rat hepatocytes a popular model in which to study hepatic function. Our knowledge of hepatic amino acid transport has been advanced as a result of this methodology. Translocation across the hepatocyte plasma membrane can, in some instances, represent the rate-limiting step in the overall metabolism of certain amino acids. Furthermore, regulation of amino acid uptake by hepatocytes appears to play a role in diabetes, and perhaps in malignant transformation. Comparisons between normal adult hepatocytes and several hepatoma cell lines show basic differences in amino acids transport. There are at least eight distinct systems in normal hepatocytes for transport of the amino acids. One of these, System A, transports the small neutral amino acids most efficiently and responds to a wide variety of hormones. Systems A and N exhibit enhanced uptake rates after the cells have been maintained in the absence of extracellular amino acids, a phenomenon termed adaptive control. Further studies using isolated hepatocytes will increase our basic understanding of membrane transport processes and their regulation.  相似文献   

6.
Bile acid synthesis in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Normal adult rat hepatocytes were incubated for 48h and the concentration of total and individual bile acids in homogenized samples of the culture was measured at intervals during the incubation, using radiogas chromatography and isotope derivative assay. The net increase in bile acids over the value observed at the start of the culture was taken as synthesis. The results showed that bile acid synthesis was linear up to 24h of incubation, at a rate of 20nmol/g hepatocytes per hour, and that 85% of the newly synthesized bile acid was cholic acid. The bile acid synthesized was mainly conjugated with taurine. These results suggest that isolated hepatocytes cultured in the way described could be a useful in vitro model for the study of bile acid synthesis.  相似文献   

7.
8.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

9.
10.
An isolated rat hepatocyte preparation was used to study the cellular toxicity of cadmium and the protective effects of metallothionein on cadmium-induced toxicity. Exposure of primary suspension cultures of isolated rat hepatocytes to Cd2+ (0-35.7 microM) for 15 min resulted in a dose-dependent reduction in the synthesis of cellular proteins during a subsequent 6 h incubation. Such inhibition could not be correlated with cellular lethality or gross membrane damage. Pre-induction of metallothionein in hepatocytes by zinc treatment in vivo of donor rats protected hepatocytes in vitro from cadmium-induced inhibition of protein synthesis. The protective effects in zinc-pre-induced hepatocytes are not due to alterations in the level of total cellular cadmium, but could be accounted for by the redistribution of intracellular cadmium in the presence of high levels of zinc-metallothionein. The data suggest that metallothionein exerts its protective effect by a kinetic detoxification mechanism, i.e. a decrease in reactive intracellular cadmium.  相似文献   

11.
The effect of carbon tetrachloride on isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Isolated rat hepatocytes were incubated with carbon tetrachloride (CCl4) at a concentration of 0.2 mol CCl4/ml of incubation medium. The ultrastructural alterations and release of lactate dehydrogenase (LDH) and glutamate-oxaloacetate transaminase (GOT), were recorded after different periods of incubation. After 5 min incubation with CCl4, morphological changes observed by electron microscopy, involved the plasma membrane. The endoplasmic reticulum and mitochondria were altered later. These morphological alterations were accompanied by an early release of LDH and GOT into the incubation medium. It is concluded that, in contrast with its in vivo effects, in vitro CCl4 can induced an early morphological alteration of the hepatocyte plasma membrane before damaging the endoplasmic reticulum.  相似文献   

12.
Gluconeogenesis from pyruvate, alanine, lactate and propionate was inhibited by methylmalonate in both rat and guinea-pig hepatocytes. The effect was dose-dependent. Gluconeogenesis from glycerol and xylitol was not affected.  相似文献   

13.
Extracellular Ca2+ stimulated fatty acid synthesis in isolated rat hepatocytes. Orthovanadate (0.2--2.0 mM), an inhibitor of Ca2+-dependent ATPases, stimulated fatty acid synthesis in both the presence and the absence of extracellular Ca2+. Insulin stimulated fatty acid synthesis only in the presence of extracellular Ca2+. The contribution of extracellular Ca2+ to insulin stimulation of fatty acid synthesis is discussed.  相似文献   

14.
Ellagic acid, a plant polyphenol, showed protective effect on isolated rat hepatocytes against destruction due to lipid peroxide formation induced by t-butyl hydroperoxide in vitro. Ellagic acid inhibited the generation of superoxide anions and hydroxyl radicals both in enzymic and non enzymic systems, thus providing protection against oxidative damage.  相似文献   

15.
Freshly isolated fetal hepatocytes transformed 4.3, 8.5 and 19.2 pmol/min/10(6) cells of stearic, linoleic and alpha-linolenic acids, respectively, complexed to albumin or alpha-fetoprotein (AFP), to more unsaturated derivatives. Thus, fetal hepatocytes displayed high elongase and delta9, delta6, delta5-desaturase activities, as well as an ability to synthesize hexaene derivatives. Desaturase activities decreased when the time of culture of fetal hepatocytes (previous to incubation with the substrate) was prolonged, being practically undetectable after 24 h of culture. However, the rate of fatty acid uptake remained nearly constant. When AFP was used as the carrier the amount of hexaene fatty acid derivatives of alpha-linolenic acid recovered in cells was reduced up to 50% by albumin. This effect was associated with an increase of radioactivity found in the culture medium of hepatocytes incubated with AFP compared to albumin. Both observations taken together could be explained by an efflux of hexaene derivatives from cells caused by AFP.  相似文献   

16.
Treatment of isolated rat hepatocytes with 10-100 nM insulin for 5-10 min increased by about 2-fold the activity of a protamine kinase which exhibited properties similar to those of a protamine kinase from bovine kidney (Damuni, Z., Amick, G. D., and Sneed, T. R. (1989) J. Biol. Chem. 264, 6412-6416). Half-maximal increase in protamine kinase activity occurred at about 1 nM insulin. This effect of insulin was detected only when 25 mM NaF or 50 mM KPO4 were included in the homogenization buffers and was not prevented by preincubation of the hepatocytes with 10 microM cycloheximide. Insulin stimulation of protamine kinase was maintained following chromatography of extracts on protamine-agarose, DEAE-cellulose, and Sephacryl S-200 gel filtration. The apparent Mr of the protamine kinase from control and insulin-treated hepatocytes was 45,000 as estimated by gel permeation chromatography. Experiments utilizing partially purified protamine kinase from control and insulin-treated hepatocytes indicated that insulin did not affect the apparent Km for protamine, Mg2+, or ATP, but increased the Vmax for the protamine kinase reaction by 1.6-2-fold. Incubation with the catalytic subunit of protein phosphatase 2A completely inactivated the protamine kinase from control and insulin-treated cells. The results indicate that the insulin-stimulated increase in protamine kinase activity may be due to a covalent modification, possibly phosphorylation, of the protamine kinase.  相似文献   

17.
Insulin and glucagon stimulate amino acid transport in freshly prepared suspensions of isolated rat hepatocytes. The kinetic properties of alpha-amino[1-14C]isobutyric acid (AIB) transport were investigated in isolated hepatocytes following stimulation by either hormone in vitro. In nonhormonally treated cells (i.e. basal state), saturable transport occurred mainly through a low affinity (Km approximately equal to 40 mM) component. In insulin or glucagon-treated hepatocytes, saturable transport occurred through both a low affinity component (similar to that observed in the basal state) and a high affinity (Km approximately equal to 1 mM) component. At low AIB concentrations (less than 0.5 mM), insulin and glucagon at maximally stimulating doses increased AIB uptake about 2-fold and 5-fold, respectively. The high affinity component induced by either hormone exhibited the properties of the A (alanine preferring) mediation of amino acid transport. This component required 2 to 3 h for maximal expression, and its emergence was completely prevented by cycloheximide. Half-maximal stimulation was elicited by insulin at about 3 nM and by glucagon at about 1 nM. Dibutyryl cyclic AMP mimicked the glucagon effect and was not additive to it at maximal stimulation. Maximal effects of insulin and glucagon, or insulin and dibutyryl cyclic AMP, were additive. We conclude that insulin and glucagon can modulate amino acid entry in hepatocytes through the synthesis of a high affinity transport component.  相似文献   

18.
Liver cells isolated from normal and cholestyramine-treated rats were incubated as cell suspensions for up to 4 hr in a simple, defined medium. The bile acid concentration in cells plus cell medium was determined by gas-liquid chromatography. Normal hepatocytes synthesized cholic acid at an initial rate of 0.25 nmol/mg cell protein per hr, which is comparable to rates reported from in vivo methods. This rate was increased more than 4-fold when rats were fed a cholestyramine-containing diet for 7 days prior to liver cell isolation. Although cholic acid was secreted into the cell medium during the incubation, it could not be assayed reliably by the hydroxysteroid dehydrogenase assay method, contrary to the reports of Anwer et al. 1975. Biochem. Biophys. Res. Commun. 64: 603 and Gardner and Chenouda 1978. J. Lipid Res. 19: 985.  相似文献   

19.
Biphenyl 4-hydroxylation was studied in isolated rat hepatocytes. It was found that there was in inter-relationship between 4-hydroxylase activity and glucuronidase activity, removal of 4-hydroxybiphenyl by conjugation being necessary to stimulate a second phase of hydroxylation. Addition of an NADPH-regenerating system resulted in an initial depression of both processes, but later their activities were enhanced. This action could not be explained by the presence of non-viable cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号