首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCI, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCI. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmOtic equilibrium between the intra-and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.  相似文献   

2.
Physiological aspects of salt-adaptation in the cyanobacterium Synechococcus 6311 growing in a continuous culture (turbidostat) were studied. The process of salt-adaptation was completed within 3 days, as expressed by the specific growth rate of cells grown in the presence of 0.2 and 0.4 molar NaCl. An increase in photosynthetic activity during the adaptation period leads to the accumulation of soluble sugars, essential for osmoregulation in the salt-grown cells. Cells grown in the presence of 0.4 molar NaCl showed an initial inhibition in the rate of protein synthesis which was enhanced after the 1st day of salt stress. After adaptation, salt-grown cells showed an increase in phycobiliprotein synthesis and a higher phycobiliprotein to protein ratio.  相似文献   

3.
The spring flush of growth and the utilization of reserve materials in this growth was studied in lilac plants 0, 2, 4 and 6 weeks after bud break. The influence of nitrogen applied the previous season on the storage and utilization of carbohydrate and nitrogen reserves was determined. The plants were separated into buds, stems and roots and analyzed for changes in total available carbohydrates, sugars, hemi-celluloses, total nitrogen, basic and non-basic amino acids and organic acids. The bulk of the carbohydrate reserves occurred as soluble sugars in the roots, although the reserves of sugars and hemicellulose in the stem was important during the first two weeks after bud break. The bulk of the nitrogen reserves were stored as non-basic amino acids in the stems and roots. However, the roots of plants grown under high nitrogen levels contained twice us much total nitrogen as roots grown under low nitrogen. This additional nitrogen which was stored in the roots of high nitrogen plants was released as arginine. The dry weight of buds increased 3–10 fold during the initial two week period and during the next four weeks doubled again. This bud growth was correlated with the stored nitrogen reserves. The high nitrogen plants grew twice as much and utilized more of the reserve carbohydrates in spring growth than low nitrogen plants. Carbohydrates were synthesized in this new growth and the high nitrogen plants utilized this carbohydrate for additional growth while low nitrogen plants transported it to the stems and roots.  相似文献   

4.
Growth of the cyanobacterium Anabaena sp. PCC 7120 and its nitrate assimilation-defective mutants was inversely proportional to the NaCl concentration in the medium. Presence of nitrate in the saline medium protected the growth of the parent but not of the mutant strains from salt toxicity. On the other hand, ammonium nitrogen protected the growth of all the strains from salt toxicity. However, the effect was less than that of nitrate. An altered sodium transport system was evident in the mutant strains and was most marked in mutant SP9. The cellular sodium concentration in parent and mutant strains also varied. Although mutant SP9 exhibited the lowest level of cellular sodium, it was as sensitive to salt toxicity as other strains. It is assumed that merely the presence of a toxic level of NaCl in the ambient environment is sufficient to damage the structural and functional components of the plasma membrane.  相似文献   

5.
Changes in total nitrogen and free amino acid contents in stemcuttings of Morus alba have been studied. The fresh and dryweights and total nitrogen amounts of the parent stems of cuttingsdecreased initially after cutting. Their increase follows theformation of main roots in cuttings, suggesting that, like carbohydrates,sugars and starch, stored nitrogenous substances are used forsprouting and rooting of cuttings. Amino acids found in stems,roots and shoots are those common in other higher plants withthe exception of pipecolic acid and 5-hydroxypipecolic acid.Significant changes in the levels of asparagine, proline, arginine,-aminobutyric acid and alanine in roots, bark and wood of parentstems were observed during cutting growth, whereas those ofother amino acids remained comparatively constant; the mostpredominant amino acid in the starting materials was proline.while that in the cuttings during growth was asparagine. Theresults suggest that, among free amino acids, asparagine, prolineand arginine play the major part in storage of nitrogen in mulberry.The importance of glut-amine and asparagine in nitrogen metabolismin mulberry has been discussed.  相似文献   

6.
Exopolysaccharides of the cyanobacterium Oscillatoria formosa have been physico-chemically characterized and kinetics of their production studied. The organism produced 334.8 μg EPS per ml culture in 24 days with the maximum rate of production obtained during initial days of growth. HPLC analysis of the EPS hydrolysate revealed that besides three unidentified sugars, EPS contained ribose, mannose, and galacturonic acid. FT-IR spectrum of EPS revealed the presence of methyl, carboxyl and C–N groups. Elemental analysis indicated the presence of 4.7% nitrogen in EPS. The organism produced 75.6% more EPS when incubated at 35°C compared to cultures at 28°C. Under varied nutritional conditions, though the growth of the organism was less yet it produced enhanced amounts of EPS. Aqueous dispersions of EPS showed non-Newtonian, pseudoplastic behaviour. The viscosity of the aqueous solution of EPS was quite stable over a wide range of pH and temperature but it was observed to be affected by CaCl2.  相似文献   

7.
Enhancement of cyanobacterial salt tolerance by combined nitrogen   总被引:5,自引:0,他引:5       下载免费PDF全文
Presence of certain nitrogenous compounds in the growth medium significantly enhanced the salt tolerance of the fresh-water cyanobacterium Anabaena sp. strain L-31 as well as the brackish water cyanobacterium Anabaena torulosa. Among these, nitrate, ammonium, and glutamine were most effective followed by glutamate and aspartate. These nitrogenous compounds also inhibited Na+ influx in both Anabaena spp. with the same order of effectiveness as that observed for protection against salt stress. The inhibition of Na+ influx on addition of the nitrogenous substances was rapid; nitrate and ammonium inhibited Na+ influx competitively. Proline and glycine did not affect Na+ influx and also had no influence on the salt tolerance of either Anabaena sp. The observed protection was not consequent to a stimulatory effect of combined nitrogen on growth per se. Uptake of NO3 and NH4+ increased during salt stress but was not correlated with growth. Intracellular levels of NO3 and NH4+ were found to be inadequate to constitute a major component of the internal osmoticum. The results suggest that inhibition of Na+ influx by combined nitrogen is a major mechanism for protection of cyanobacteria against salt stress.  相似文献   

8.
Abstract Certain strains of the nitrogen-fixing cyanobacterium Anabaena were found to release varying quantities of ammonia without any induction, both in the presence and absence of combined nitrogen (nitrate) in the medium, during the different phases of their growth. In general, growth and ammonia release were comparable in both media, although there were strain differences. 3 patterns of ammonia release were observed in different strains during the growth period. They were: (1) release pattern parallel to the growth curve; (2) a continuous increase in release; and (3) release showing a bimodal curve.  相似文献   

9.
Anaerobic photoautotrophic growth of the cyanobacterium Oscillatoria limnetica was demonstrated under nitrogen in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5micron), a constant concentration of Na2S (2.5 mM), and constant pH (7.3). The photoanaerobic growth rate (2 days doubling time) was similar to that obtained under oxygenic photoautotrophic growth conditions. The potential of oxygenic photosynthesis is constitutive in the cells; that of anoxygenic photosynthesis is rapidly (2 h) induced in the presence of Na2S in the light in a process requiring protein synthesis. The facultative anaerobic phototrophic growth physiology exhibited by O. limnetica would seem to represent an intermediate physiological pattern between the obligate anaerobic one of photosynthetic bacteria and the oxygenic one of eucaryotic algae.  相似文献   

10.
In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.  相似文献   

11.
Food quality for grazers has been related to mineral (nitrogen, phosphorus) and biochemical (amino acids, fatty acids) constituents. The aim of the study was to examine the influence of different nitrogen sources on these constituents in two organisms, the green alga Scenedesmus quadricauda Turp. and the cyanobacterium Synechococcus sp., commonly used in feeding experiments. The two organisms were grown in continuous cultures at different growth rates. Nitrate or ammonium salts were used as nitrogen sources under both replete and limited conditions. Carbon content (mg·g−1 dry weight) was stable in both organisms independent of nitrogen source, nitrogen limitation, and growth rate. Nitrogen content decreased with limitation and growth rate in Scenedesmus and to a lesser degree in Synechococcus , whereas changes in phosphorus content were not statistically significant. The relative proportions of amino acids (% of total amino acids) were relatively stable in both organisms, whereas the proportions of fatty acids varied with growth rate and limitation. Fatty acid content was much lower in Synechococcus than in Scenedesmus . At N limitation, polyunsaturated fatty acids (PUFAs) showed lower levels in both organisms. The change occurred in the ω3 PUFA (linolenic acid) of the green alga and in the ω6 PUFA (linoleic acid) of the cyanobacterium. The difference in the response of N limitation in the two organisms may be traced to the different composition of the chloroplast membranes (the prokaryotic way) and the microsomal membranes (the eukaryotic way) where the desaturation takes place.  相似文献   

12.
An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.  相似文献   

13.
14.
Photoproduction of hydrogen has been studied as one of the ways to produce a clean, renewable energy source. Ultrastructure of the selected strain Anabaena variabilis SPU 003, a heterocystous cyanobacterium, has been done to understand the cell structure. The organism was found to be essentially a dark hydrogen producer. While pH had no significant effect on hydrogen production, optimum temperature was found to be 30 degrees C. Various sugars increased the production of hydrogen while the presence of various nitrogen sources inhibits the production. The production of hydrogen is highly sensitive to salinity and micronutrients.  相似文献   

15.
Accumulation of poly-beta-hydroxybutyrate in Spirulina platensis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Poly-beta-hydroxybutyrate has been identified in the cyanobacterium Spirulina platensis. The addition of reduced carbon compounds to the growth medium was not required for poly-beta-hydroxybutyrate accumulation. Poly-beta-hydroxybutyrate accumulated during exponential growth to 6% of the total dry weight and then decreased during the stationary phase.  相似文献   

16.
Sato H  Fujimori T  Sonoike K 《FEBS letters》2008,582(7):1093-1096
The sll1961 gene was reported to encode a regulatory factor of photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. We here show that the sll1961 gene is also essential for the phycobilisome degradation during nitrogen starvation. The defect in phycobilisome degradation was observed in the sll1961 mutant despite the increased expression of nblA, a gene involved in phycobilisome degradation during nitrogen starvation. Photosystem stoichiometry is not affected by nitrogen starvation in the sll1961 mutant nor in the wild-type. The results indicate the presence of a novel pathway for phycobilisome degradation control independent of nblA expression.  相似文献   

17.
Role of L-proline in the biosynthesis of prodigiosin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nonproliferating cells of Serratia marcescens, wild-type strain Nima, synthesized the pigment, prodigiosin, when saline suspensions were incubated with aeration at 27 degrees C in the presence of proline or alanine. Mutants PutS1 and PutS2 derived from strain Nima formed prodigiosin from alanine, but not from proline, unless alanine also was added. Strain Nima utilized proline as a sole source of carbon and of nitrogen for growth, whereas Put mutants did not. Investigation of enzymes degrading proline showed that the wild-type strain contained proline oxidase, which was absent in Put mutants. The wild type, as well as the mutants, utilized alanine as the sole source of carbon and nitrogen for growth. Although nonproliferating cells of Put mutants failed to synthesize prodigiosin from proline, addition of L-[U-14C]proline to suspensions metabolizing and synthesizing the pigment because of addition of alanine resulted in the incorporation of radioactive label into prodigiosin, as well as into cellular protein. Since Put mutants could not catabolize proline, the incorporation of [14C]proline into the prodigiosin molecule indicated that proline was incorporated directly into the pigment.  相似文献   

18.
Salinity (NaCl) is one of the major problems associated with irrigated agricultural lands, especially rice fields. Being the common inhabitants of rice fields, cyanobacteria frequently experience high concentration of NaCl which in turn causes cellular damage. Therefore, mitigation of NaCl stress in cyanobacteria, plant growth-promoting microorganisms, is of utmost importance. The present study was designed to investigate the role of calcium in the alleviation of NaCl stress-induced cellular in Synechococcus sp. PCC 7942. The cyanobacterium was subjected to sub-lethal concentration of NaCl (800 mM) with and without the supplementation of calcium (1 mM CaCl2) for 8 days. The results showed a drastic reduction in growth due to excess NaCl, but supplementation of CaCl2 reduced the salt stress damage and partially restored growth. Application of calcium increased pigment contents, photosynthetic efficiency, antioxidative enzyme activity, osmolyte contents and reduced the intracellular sodium ion concentration, MDA content, electrolyte leakage and free oxygen radical generation. Furthermore, proteins involved in photosynthesis, respiration, ATP synthesis and protein synthesis along with two hypothetical proteins were also observed to be upregulated in the cyanobacterium in presence of calcium. Furthermore, proteins related to oxidative stress defence, nitrogen metabolism, carbohydrate metabolism, fatty acid metabolism and secondary metabolism were found to be upregulated by several fold. Therefore, our study suggests that calcium suppresses salt toxicity in Synechococcus sp. PCC 7942 by restricting the entry of Na+ into the cell, increasing osmolyte production and upregulating defence-related proteins.  相似文献   

19.
An antimicrobial agent is produced by the cyanobacterium Synechococcus leopoliensis which was found to be active against the Gram-positive bacterium Staphylococcus aureus. The effects of temperature, pH, incubation period, some media and different nitrogen and carbon sources on both growth and antimicrobial activity were investigated. Temperature 35 °C and pH 8 were the best for growth and antimicrobial agent production and 14 and 15 days of incubation were found to be the best for maximum growth and antimicrobial activity, respectively, in the medium BG-11.

No antimicrobial activity could be detected by the use of G medium, moderate activity was recorded with Chu 10 medium, while high activity was reported in BG-11 medium. Leucine was the best nitrogen source for antimicrobial activity, while maximum antimicrobial activity was introduced by using the carbon sources, citrate and acetate. Very high antimicrobial activity could be detected by using the carbon source galactose in combination with the nitrogen source alanine or by using arabinose with methionine.  相似文献   


20.

The objective of this study was to investigate the potential of Rhodopseudomonas palustris G5 in promoting growth and inducing salt resistance in cucumber (Cucumis sativus L.). In this study, the growth-promoting potential of the bacteria was studied by measuring the ability to produce indole-3-acetic acid (IAA) and 5-aminolevulinic acid (ALA), fix nitrogen, and solubilize potassium and phosphate. The greenhouse pot experiments were set up to study how strain G5 affected growth and salt resistance of cucumber seedlings. The results showed that strain G5 exhibited plant growth-promoting attributes such as the production of IAA and ALA, as well as nitrogen-fixing, potassium-solubilizing, and phosphorus-solubilizing ability. In pot trials, strain G5 increased shoot height, root length, fresh weight, dry weight, total chlorophyll content, and soluble sugar content of cucumber seedlings under salt stress, compared to the seedlings that were exposed to salt stress in the absence of the strain G5. Furthermore, antioxidant enzyme activity analysis showed that strain G5 strongly increased the activity of superoxide dismutase, peroxidase, and polyphenol oxidase in cucumber seedlings under salt stress. In addition, strain G5 treatment decreased H2O2 and malondialdehyde contents of salt-stressed seedling. In sum, these results showed that strain G5 enhanced growth and induced systemic resistance in cucumber seedlings under salt stress by the production of IAA, ALA, and soluble sugars, the induction of antioxidant enzymes as well as nutrient adjustment of nitrogen, phosphorus, and potassium.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号