首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoadducts and cross-links formed in DNA of human cells by a psoralen derivative, 4'-hydroxy-methyl-4,5',8-trimethylpsoralen (HMT), have been measured by a new, simple method, based on S1 nuclease digestion of 3H-labeled adducts in DNA, that provides rapid information on the repair of both classes of lesions. Normal human fibroblasts and cells from patients with dyskeratosis congenita and xeroderma pigmentosum (XP) group C were capable of removing both monoadducts and cross-links, whereas XP groups A and D failed to remove either. An XP revertant, isolated from a group A cell line on the basis of an acquired mutagen-induced resistance to ultraviolet light, has the unique property of being capable of removing cross-links but not monoadducts. Consistent with this property, the XP revertant was found to be resistant to cell killing by the cross-linking psoralen derivative, HMT, but as sensitive as its parental cell line to a monofunctional psoralen derivative, 5-methylisopsoralen.  相似文献   

2.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

3.
Treatment of DNA with psoralen plus near-ultraviolet irradiation gives rise to both monoadducts and cross-links. We have examined the repair of plasmid NTP16 DNA treated in this way in vitro and then used to transform E. coli. Monoadducts are found to be potentially lethal, and can be repaired by uvr-dependent and recA-dependent pathways. The presence of a related resident plasmid in the transformed cells can enhance the survival of the incoming damaged NTP16 DNA. This effect is not recA-dependent, and a similar effect (designated "resident enhanced repair") has been observed previously with UV-irradiated plasmids of this particular incompatibility group. Removal of unbound psoralen from the plasmid DNA and exposure to further NUV is known to increase the ratio of cross-links to monoadducts, and we demonstrate that such cross-linked plasmid DNA is not readily repaired following transformation. However in the presence of homologous DNA (related resident plasmid) there is evidence for the repair, and hence uptake by the cell, of cross-linked DNA.  相似文献   

4.
5.
Monoadducts and interstrand cross-links are formed in DNA after psoralen plus light treatment of bacteriophage lambda . Survival and clear plaque mutation frequency of lambda after photosensitization with 8-methoxypsoralen (8-MOP) are increased when the wild type host is slightly UV-irradiated (W-reactivation and W-mutagenesis). The recA13, lexA1 and uvrA6 mutations block W-reactivation and W-mutagenesis of lambda treated with 8-MOP plus light. Using the technique of "repeated irradiation" we showed that the mutagenic effect of 8-MOP plus light treatment on phage is due mainly to formation of cross-links in DNA. The mutagenic activity of monoadducts had been studied by using angular furocoumarin, angelicin which forms mainly monoadducts in DNA. Upon W-mutagenesis of phage lambda treated with angelicin plus light a high mutagenic effect is observed. The results indicate that the mutagenic activity of monoadducts is 15-20 fold slower as compared to that of cross-links. W-reactivation and W-mutagenesis of UV-irradiated (254 nm) bacteriophage lambda are also observed after 8-MOP plus light treatment of Escherichia coli uvrA and wild type hosts. It is possible that the difference in mutagenic activity of psoralen adducts could depend on the repair mechanism of adducts: cross-links repair in bacterial and lambda DNA is controlled by lexA gene (error-prone SOS-repair mechanism), while monoadducts can be efficiently repaired by error-free excision and recombination.  相似文献   

6.
The clastogenic effect of furocoumarins psoralen and angelicin in the presence of near-UV (320-380 nm) differs greatly, as do their modes of interaction with DNA. Psoralen, which requires only one-fifth as much light energy to produce the same lethal effect as angelicin at equimolar concentrations, is able to cross-link DNA whereas angelicin cannot. The frequency of micronuclei which arise from chromosomal fragments shows the same differential effect as lethality. Indeed aberrations account for much or all of the lethality observed. Metaphase analysis at comparable aberration frequencies revealed that angelicin and psoralen both induce chromatid deletions and a wide spectrum of chromatid exchanges. These data show that both cross-links and monoadducts to the DNA can result in chromosomal aberrations. The relative contributions of cross-links and monoadducts to chromosomal aberrations still remain to be determined. It is noteworthy that extensive chromosomal damage is induced in mammalian cells by the combination of psoralen and near-UV, a treatment which is currently widely used in the therapy of psoriasis.  相似文献   

7.
Cells from patients with the inherited disorder, Fanconi's anemia (FA), were analyzed for endonucleases which recognize DNA interstrand cross-links and monoadducts produced by psoralen plus UVA irradiation. Two chromatin-associated DNA endonuclease activities, defective in their ability to incise DNA-containing adducts produced by psoralen plus UVA light, have been identified and isolated in nuclei of FA cells. In FA complementation group A (FA-A) cells, one endonuclease activity, pI 4.6, which recognizes psoralen intercalation and interstrand cross-links, has 25% of the activity of the normal human endonuclease, pI 4.6, on 8-methoxypsoralen (8-MOP) plus UVA-damaged DNA. In FA complementation group B (FA-B) cells, a second endonuclease activity, pI 7.6, which recognizes psoralen monoadducts, has 50% and 55% of the activity, respectively, of the corresponding normal endonuclease on 8-MOP or angelicin plus UVA-damaged DNA. Kinetic analysis reveals that both the FA-A endonuclease activity, pI 4.6, and the FA-B endonuclease activity, pI 7.6, have decreased affinity for psoralen plus UVA-damaged DNA. Both the normal and FA endonucleases showed approximately a 2.5-fold increase in activity on psoralen plus UVA-damaged reconstituted nucleosomal DNA compared to damaged non-nucleosomal DNA, indicating that interaction of these FA endonucleases with nucleosomal DNA is not impaired. These deficiencies in two nuclear DNA endonuclease activities from FA-A and FA-B cells correlate with decreased levels of unscheduled DNA synthesis (UDS), in response to 8-MOP or angelicin plus UVA irradiation, in these cells in culture.  相似文献   

8.
A T Yeung  W J Dinehart  B K Jones 《Biochemistry》1988,27(17):6332-6338
Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. We used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 degrees C (BCR). The BCR reaction is more efficient than the photoreversal reaction. We show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine base freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, we have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site.  相似文献   

9.
Psoralen cross-linking was used to produce intramolecular cross-links in the Escherichia coli 16 S ribosomal RNA in the inactive and active forms of the 30 S subunit. A number of psoralen cross-links were made in the inactive form that were not made in the active form. The most frequent of these cross-links was sequenced by a series of techniques and identified as C-924 to U-1532. In this region, a three-base complementary, (921-923).(1532-1534), forms a site where psoralen can stack and produce a cross-link between C-924 and U-1532. When psoralen monoadducts were placed on inactive subunits and the conformation was switched to the active form before cross-linking, a new cross-link involving U-1393 was detected. U-1393 is part of the complementarity, (923-925).(1391-1393), that has previously been proposed as being an element of the functional secondary structure on the basis of sequence comparison. The complementarity between (921-923).(1532-1534) occurs in most nonmitochondrial small subunit RNAs; however, there are several counter examples in which it does not occur. This suggests that this alternate secondary structure interaction is not necessary for the function of the 30 S subunit.  相似文献   

10.
Photobiological activity of dictamnine, a furoquinoline alkaloid, to induce lytic phage development in a lysogen of Escherichia coli was measured as a line of evidence for the photoinduced genotoxicity. Since dictamnine forms the monoadducts to DNA but not the diadducts (DNA cross-links) by photoirradiation, the photobiological activity was compared with that of a cross-linking agent 5-methoxypsoralen, a structural analog, on the basis of relative quantum yield. The activity of dictamnine with respect to both phage induction and photoinduced lethal activity was weaker than the psoralen derivative. Any lethal DNA damage including monoadducts and diadducts of 5-methoxypsoralen appeared to contribute to prophage induction at the same level of efficiency.  相似文献   

11.
The influence of nucleosome structure on the activity of 2 chromatin-associated DNA endonucleases, pIs 4.6 and 7.6, from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined on DNA containing either psoralen monoadducts or cross-links. As substrate a reconstituted nucleosomal system was utilized consisting of a plasmid DNA and either core (H2A, H2B, H3, H4), or total (core plus H1) histones from normal or XPA cells. Both non-nucleosomal and nucleosomal DNA were treated with 8-methoxypsoralen (8-MOP) plus long-wavelength ultraviolet radiation (UVA), which produces monoadducts and DNA interstrand cross-links, and angelicin plus UVA, which produces monoadducts. Both normal endonucleases were over 2-fold more active on both types of psoralen-plus-UVA-damaged core nucleosomal DNA than on damaged non-nucleosomal DNA. Addition of histone H1 to the system reduced but did not abolish this increase. By contrast, neither XPA endonuclease showed any increase on psoralen-treated nucleosomal DNA, with or without histone H1. Mixing the normal with the XPA endonucleases led to complementation of the XPA defect. These results indicate that interaction of these endonucleases with chromatin is of critical importance and that it is at this level that a defect exists in XPA endonucleases.  相似文献   

12.
Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombination, predicting that cross-link and DSB repair should induce similar recombination end points. We compared psoralen cross-link, psoralen monoadduct, and DSB repair using plasmid substrates with site-specific lesions and measured the patterns of gene conversion, crossing over, and targeted mutation. Psoralen cross-links induced both recombination and mutations, whereas DSBs induced only recombination, and monoadducts were neither recombinogenic nor mutagenic. Although the cross-link- and DSB-induced patterns of plasmid integration and gene conversion were similar in most respects, they showed opposite asymmetries in their unidirectional conversion tracts: primarily upstream from the damage site for cross-links but downstream for DSBs. Cross-links induced targeted mutations in 5% of the repaired plasmids; all were base substitutions, primarily T --> C transitions. The major pathway of psoralen cross-link repair in yeast is error-free and involves the formation of DSB intermediates followed by homologous recombination. A fraction of the cross-links enter an error-prone pathway, resulting in mutations at the damage site.  相似文献   

13.
We have investigated some biological consequences of light-induced psoralen-deoxyribonucleic acid (DNA) adducts and find that for several Escherichia coli functions (killing of strain AB2480 recA13 uvrA6, inactivation of phage lambda plaque-forming ability in wild type and uvrA6 hosts, loss of ability to transmit intact Flac(+) episomes), a light exposure sufficient for production of a single cross-link per DNA molecule correlates well with the biological consequence. Although one cross-link per genome is apparently lethal to recA13 uvr(-) strains, mutants carrying the recA13 or uvrA6 markers survive light exposures producing 6.7 and 16 cross-links per genome, respectively, and wild-type cells recover from 65 psoralen cross-links. Evidently, the excision and recombinational repair systems complement one another in reconstructing an intact genome from cellular DNA containing psoralen photoproducts. The above bacterial and phage strains, in which DNA repair processes are minimized, are also extremely sensitive to pyrimidine dimer-forming 254-nm UV light (without psoralen), and were expected to respond similarly to formation of psoralen-pyrimidine base monoadducts in their DNA. Since the biological inactivation by psoralen correlates well with cross-link formation, we suggest that the sensitizing action of this drug primarily derives from its ability to form DNA cross-links.  相似文献   

14.
The 360-nm photoinitiated reactions of certain furo[3,2-g]coumarins with DNA have been examined using ethidium fluorescence assays. Psoralent at 1.85 × 10?4M gives 3.3 × 10?5, 1.8 × 10?5, and 4.5 × 10?6 interstrand cross-links/nucleotide with DNAs of (A + T) content 70, 60, and 50%, respectively. The relative rates of cross-linking of λ-DNA are 4-methylpsoralen > psoralen > angelicin ? 4-phenylpsoralen. Angelicin (isopsoralen) gives a small (12–14%) but reproducible amount of DNA interstrand cross-links. Addition of netropsin, an antibiotic that binds preferentially to (A + T)-rich regions, to Clostridium perfringens DNA reduces the extent of cross-linking by psoralen from 66 to 10% in 50 min. In contrast, pretreatment of DNA with olivomycin or chromomycin A3 [which bind to (G + C)-rich regions] has little effect on psoralen cross-linking. Relative rates of monoadduction of furocoumarins to PM2-CCC-DNA detected by thermal depyrimidation and alkaline strand scission is angelicin > 4-methyl-4′,5′-dihydropsoralen > 4′,5′-dihydropsoralen > 3,4-dihydropsoralen (no monoadduction), indicating angelicin is suitable for photolabeling of chromatin. Binding of netropsin to the PM2-DNA prevents cross-linking by angelicin but permits and enhances monoadduction. In contrast neither olivomycin nor chromomycin affects the reaction of angelicin with DNA. In the frozen solution, where the photoinduced cross-linking of DNA by psoralen may be suppressed, psoralen forms monoadducts about twice as readily as angelicin. Subsequent 360-nm irradiation of the psoralen monoadducts at ambient temperatures (and in separate experiments after dialysis to remove unreacted psoralen) completes the cross-links.  相似文献   

15.
16.
We describe the use of site specific psoralen (SSP) to determine the solution structure of a segment of the human beta globin pre-mRNA. In these experiments, SSP is first delivered as monoadducts to specific nucleotides in the pre-mRNA and subsequently used to form intramolecular RNA-RNA cross-links. The use of this reagent greatly decreases the number of the cross-linked products as compared to generalized psoralen cross-linking. The experiments confirm the locations of previously determined aminomethyltrimethylpsoralen (AMT) cross-links in the human precursor mRNA. In addition, new cross-links consistent with an alternative secondary structure and a small number of cross-links that represent higher order interactions have been determined. Altogether, 42 of 47 cross-links identified in this analysis can be accounted for in a small number of alternative secondary structures and higher order interactions. The site directed cross-linking technique will be useful for the precise determination of RNA secondary and tertiary structures under a variety of experimental conditions.  相似文献   

17.
Targeting DNA damage by triplex-forming oligonucleotides (TFOs) represents a way of modifying gene expression and structure and a possible approach to gene therapy. We have determined that this approach can deliver damage with great specificity to sites in the human gene for the G-protein-linked receptor rhodopsin, mutations of which can lead to the genetic disorder autosomal dominant retinitis pigmentosa. We have introduced DNA monoadducts and interstrand cross-links at multiple target sites within the gene using TFOs with a photoactivatable psoralen group at the 5'-end. The extent of formation of photoadducts (i.e., monoadducts and cross-links) was measured at target sites with a 5'-ApT sequence at the triplex-duplex junction and at a target site with 5'-ApT and 5'-TpA sequences located four and seven nucleotides away, respectively. To improve psoralen reactivity at more distant sites, psoralen moieties were attached to TFOs with nucleotide "linkers" from two to nine nucleotides in length. High-affinity binding was maintained with linkers of up to 10 nucleotides, but affinities tended to decrease somewhat with increasing linker length due to faster dissociation kinetics. DNase I footprinting indicated little, if any, interaction between linkers and the duplex. Psoralen-TFO conjugates formed DNA cross-links with high efficiency (56-65%) at 5'-ApT sequences located at triplex junctions. At a 5'-ApT site four nucleotides away, the efficiency varied with linker length; a four-nucleotide linker gave the highest efficiency. Duplexes with 5'-TpA and 5'-ApT sites two nucleotides away, in otherwise identical sequences, were cross-linked with efficiencies of 56 and 38%, respectively. These results indicate that TFO-linker-psoralen conjugates allow simultaneous, efficient targeting of multiple sites in the human rhodopsin gene.  相似文献   

18.
Preferential psoralen photobinding sites have been mapped in vitro on restriction fragments spanning the SV40 origin region and surrounding sequences by a new fine structure analysis technique. Purified DNA fragments were photoreacted with 3H-5-methylisopsoralen (3H-5-MIP), a psoralen derivative which forms only monoadducts. Fragments were then end-labeled and digested with lambda exonuclease, a 5' processive enzyme which we have determined pauses at 5-MIP monoadducts. When photobinding sites were mapped on denaturing sequencing gels, it was observed that 5-MIP binds preferentially to 5'-TA sites, and to a lesser degree to 5'-AT sites. Utilizing this approach, we have identified a psoralen hypersensitive region in which the binding sites were much stronger than those in the surrounding sequences. This region extends from 150 base pairs (bp) to the late side of the enhancers to the early enhancer/promoter boundary. We suggest that this region contains a sequence directed structural alteration of the DNA helix which can be detected by the psoralen mapping approach described.  相似文献   

19.
3-carbethoxypsoralen (3-CPs) is a new linear psoralen derivative. Its dark interaction and photoreaction with DNA has been studied and compared with that of a well known bifunctional psoralen: 8-methoxypsoralen (8-MOP). 3-CPs is able to form in the dark a non covalent complex with native DNA. After irradiation of this complex with UV-A light (365 nm) 3-CPs is able to link covalently to DNA. Heat denaturation and renaturation patterns of treated DNA clearly show that, in contrast to 8-MOP, 3-CPs does not form DNA interstrand cross links. Fluorescence studies show that the photobinding of 3-CPs gives rise to the formation of monoadducts involving the 4′,5′ double bond of this molecule.  相似文献   

20.
Replication of damaged DNA is suspected to play an important role in cell cycle, genetic stability, and survival pathways. Using psoralen photoaddition as prototype DNA damage and the renaturing agarose gel electrophoresis technique to measure DNA cross-linking in individual genes, Vos and Hanawalt previously observed efficient bypass replication of psoralen monoadducts in human genes (J.-M. H. Vos and P. C. Hanawalt, Cell 50:789-799, 1987). To understand the mechanism of bypass replication in human cells, mutants affected in such a process would be useful. We now report that cells from individuals suffering from the hereditary recessive syndrome xeroderma pigmentosum variant (XPV) are hypersensitive to killing induced by photoactivated psoralen. In addition, analysis of psoralen-mediated DNA cross-linking in the rRNA genes indicated that although repair of psoralen adducts was similar to that of normal individuals, XPV cells were markedly deficient in the ability to bypass psoralen adducts during replication; in comparison with normal cells, approximately half as many monoadducts were bypassed during replication in XPV cells. Furthermore, in contrast to normal cells, replication of interstrand cross-links was not detected in XPV. This is the first demonstration of a deficiency in bypass replication detected at the gene-specific level in vivo. A model involving a strand-specific defect in recombinational bypass in XPV is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号