首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like the other oxidation products of the lipid moiety of plasma low density lipoproteins (LDL), cholesterol oxidation products are consistently found within the characteristic lesions of atherosclerosis, both in experimental animals and in man. A growing bulk of evidence suggests that oxysterols make a significant contribution to the vascular remodeling that occurs in atherosclerosis, being involved in various key steps of this complex process: endothelial cell dysfunction, adhesion of circulating blood cells, foam cell and fibrous cap formation, modulation of the extracellular matrix (ECM), vascular cell apoptosis and plaque’s instability. Moreover, oxysterols have been demonstrated to be at least one or two orders of magnitude more reactive than unoxidized cholesterol in exerting pro-inflammatory, pro-apoptotic, and pro-fibrogenic effects. Thus, a pathological level of cholesterol oxidation in the vasculature may be the missing molecular link between hypercholesterolemia and the formation of atherosclerotic lesions.  相似文献   

2.
Lipid oxidation is one of the main chemical degradations occurring in biological systems and leads to the formation of compounds that are related to aging and various chronic and degenerative diseases. The extent of oxidation will depend on the presence of antioxidants/pro-oxidants, the unsaturation degree of fatty acids, and environmental conditions. Lipid oxidation can also affect other molecules that have double bonds in their chemical structures, such as cholesterol. Cholesterol oxidation products (COPs) have been studied in depth, because of their negative and controversial biological effects. The formation of COPs can be particularly favored in the presence of light and photosensitizers, since they generate excited singlet oxygen that rapidly reacts with the double bond by a non radical mechanism and without any induction period. The present review intends to provide an overall and critical picture of cholesterol photosensitized oxidation in food and biological systems, and its possible impact on human health and well-being.  相似文献   

3.
Volatile lipid oxidation products   总被引:3,自引:0,他引:3  
  相似文献   

4.
Oxidation of phospholipids results in chain-shortened fragments and oxygenated derivatives of polyunsaturated sn-2 fatty acyl residues, generating a myriad of phospholipid products. Certain oxidation products of phosphatidylcholine bind to and activate the human receptor for PAF, and these PAF-like lipids are potent, selective inflammatory mediators. Formation of PAF-like lipids is nonenzymatic and so their accumulation is unregulated. PAF-like lipids are produced in vivo in response to oxidative stresses and are responsible for attendant acute inflammatory responses. PAF-like lipids almost exclusively contain an ether-linked alkyl residue at the sn-1 position of the phosphatidylcholine backbone and molecular identification of these is facilitated by phospholipase A1 treatment to remove the bulk of the inactive phospholipids. The identity of biologically active species generated by oxidative fragmentation and oxidation can be elucidated by understanding relevant reactions leading to the formation of PAF-like lipids, and then their structure can be established by tandem mass spectrometry and chemical synthesis.  相似文献   

5.
Cholesterol and plant sterols are lipids which are abundantly present in a western type diet of animal and plant origin, respectively. The daily intake averages 300 mg/day each. Over the past decades, a steadily increasing consumption of plant sterol enriched dairy products (2–3 g/day) took place to lower circulating LDL cholesterol concentrations. Like all unsaturated components, plant sterols can be attacked by reactive oxygen species resulting in plant sterol oxidation products (POPs). The most widespread methods for POP determination are high-performance liquid chromatography and gas–liquid chromatography. Yet, based on the low plasma POP concentrations in normophytosterolemic subjects (POPs: ∼0.3–4.5 ng/mL), a reliable quantification yielding an appropriate limit of detection remains a challenge. While the more abundantly present cholesterol oxidation products (COPs) have elaborately been studied, research on the metabolism and biological effects of POPs is only emerging. In relation to atherogenity, biological effects including modulation of cholesterol homeostasis, membrane functioning, and inflammation are attributed to POPs. Although mostly supra-physiological concentrations are applied in in vitro assays, anti-tumor activity, cytotoxicity and estrogen-competition have been attributed to specific POPs. However, it is not obvious, if and how POPs may exert in vivo adverse or beneficial health effects similar to those attributed to COPs. In the field of nutritional science, standardized methods for the determination of POPs are required to perform relevant biological studies and to assess their presence in complex foods or biological tissues and fluids. The aim of this review is to provide an overview and evaluation of the published methods and an update on the biological effects attributed to POPs.  相似文献   

6.
In the last decade, a multitude of secondary products have been identified from the radical and photosensitized oxidations of polyunsaturated lipids. These secondary products consist of oxygenated monomeric materials including epoxy-hydroperoxides, oxo-hydroperoxides, hydroperoxy epidioxides, dihydroperoxides, hydroperoxy bis-epidioxides, and hydroperoxy bicycloendoperoxides. More recently, higher molecular weight dimeric compounds have been identified from autoxidized methyl linoleate and linolenate. Decomposition of these oxidation products form a wide range of carbonyl compounds, hydrocarbons, furans, and other materials that contribute to the flavor deterioration of foods and that are implicated in biological oxidation. The interaction of some of these degradation products with DNA may be involved in cell-damaging reactions.  相似文献   

7.
Hydroethidine (HE) is a blue fluorescent dye that is intracellularly converted into red-emitting products on two-electron oxidation. One of these products, namely 2-hydroxyethidium, is formed as the result of HE superoxide anion-specific oxidation, and so HE is widely used for the detection of superoxide in cells and tissues. In our experiments we exploited three cell lines of different origin: K562 (human leukemia cells), A431 (human epidermoid carcinoma cells), and SCE2304 (human mesenchymal stem cells derived from endometrium). Using fluorescent microscopy and flow cytometry analysis, we showed that HE intracellular oxidation products accumulate mostly in the cell mitochondria. This accumulation provokes gradual depolarization of mitochondrial membrane, affects oxygen consumption rate in HE-treated cells, and causes cellular apoptosis in the case of high HE concentrations and/or long cell incubations with HE, as well as a high rate of HE oxidation in cells exposed to some stimuli.  相似文献   

8.
9.
Cholesterol is a molecule with a double bond in its structure and is therefore susceptible to oxidation leading to the formation of oxysterols. These oxidation products are found in many commonly-consumed foods and are formed during their manufacture and/or processing. Concern about oxysterols consumption arises from the potential cytotoxic, mutagenic, atherogenic, and possibly carcinogenic effects of some oxysterols. Eggs and egg-derived products are the main dietary sources of oxysterols. Thermally-processed milk and milk-derived products are another source of oxysterols in our diet. Foods fried in vegetable/animal oil, such as meats and French-fried potatoes, are major sources of oxysterols in the Western diet. Efforts to prevent or to reduce cholesterol oxidation are directed to the use of antioxidants of either synthetic or natural origin. Antioxidants are not only able to inhibit triglyceride oxidation, some of them can also inhibit cholesterol oxidation. Among synthetic antioxidants 2,6-ditertiarybutyl-4-methylphenol (BHT), and tertiary butylhydroquinone (TBHQ) can efficiently inhibit the thermal-induced oxidation of cholesterol. Some natural antioxidants, such as alpha- and gamma-tocopherol, rosemary oleoresin extract, and the flavonoid quercetin, show strong inhibitory action against cholesterol oxidation.  相似文献   

10.
The oxidation products of crude mesobilirubinogen   总被引:6,自引:6,他引:0       下载免费PDF全文
Bile pigment esters were separated by ascending t.l.c. Apparently pure pigments, obtained by ferric chloride oxidation of crude mesobilirubinogen, derived from commercial bilirubin by reduction with sodium amalgam, were shown to be complex mixtures. Successive chromatography of their dimethyl esters on silica gel in methyl acetate-methyl propionate-dichloromethane-carbon tetrachloride (1:1:1:1, by vol.), ethyl methyl ketone-1,2-dichloroethane (1:2, v/v) and benzene-ethanol (100:3, v/v) revealed two major blue pigments (verdins), six major violet pigments (violins) and a red pigment (rhodin) together with numerous minor components. i-Urobilin dimethyl ester, prepared from mesobilirubinogen by dehydrogenation with aqueous iodine, was resolved into three major and at least four minor components on silica gel-kieselguhr (3:1, w/w) in benzene-ethanol (25:2, v/v). The chemical nature of these pigments was investigated by oxidation, by visible and u.v. spectroscopy, by mass spectrometry and by n.m.r. spectrometry. The evidence suggests unusual rearrangement of bilirubin during reduction leading to the formation of IIIalpha and XIIIalpha isomers. Isomeric forms of mesobiliviolin IXalpha and of i-urobilin IXalpha may also be formed.  相似文献   

11.
Lipid oxidation products are formed at sites of increased oxidant stress and have been shown to accumulate in atherosclerotic lesions. Although recent studies have focused on the formation and metabolism of oxidized lipids, very little is known about their biological activities and possible (patho)physiological functions. Oxidation of cholesteryl esters containing unsaturated fatty acids leads to the formation of hydroperoxides that are either reduced to alcohols or degrade into biologically active "core-aldehydes". In this review, the mechanisms of formation and metabolic fate of oxidized cholesteryl esters, their occurrence, as well as possible biological activities are discussed. Based on the current knowledge, cholesteryl ester oxidation leads to the formation of biologically active substances, which could actively contribute to the progression of atherosclerotic lesions and their resulting complications.  相似文献   

12.
Lipid oxidation products in cell signaling   总被引:11,自引:0,他引:11  
  相似文献   

13.
Giulivi C  Traaseth NJ  Davies KJ 《Amino acids》2003,25(3-4):227-232
Summary. Dityrosine is found in several proteins as a product of UV irradiation, -irradiation, aging, exposure to oxygen free radicals, nitrogen dioxide, peroxynitrite, and lipid hydroperoxides. Interest of dityrosine in proteins is based on its potential as a specific marker for oxidatively damaged proteins and their selective proteolysis, hence it could be used as a marker for oxidative stress. Dityrosine is also the product of normal post-translational processes affecting specific structural proteins. Since post-translational modification of a given amino acid in a protein is equivalent to the substitution of that residue by an analogue, it has been proposed that the covalent modification of amino acids may serve as a marking step for protein degradation.  相似文献   

14.
Mechanisms of fibrogenesis   总被引:4,自引:0,他引:4  
Fibrogenesis is a mechanism of wound healing and repair. However, prolonged injury causes deregulation of normal processes and results in extensive deposition of extracellular matrix (ECM) proteins and fibrosis. The current review will discuss similarities and differences of fibrogenesis in different organs and systems and focus on the origin of collagen producing cells. Although the relative contribution will vary in different tissues and different injuries, there are three general sources of fibrogenic cells: endogenous fibroblasts or fibroblast-like cells, epithelial to mesenchymal transition, and recruitment of fibrocytes from the bone marrow.  相似文献   

15.
Autophagy is a catabolic pathway essential for cellular energy homeostasis that involves the self-degradation of intracellular components in lysosomes. This process has been implicated in the pathophysiology of many human disorders, including infection, cancer, and fibrosis. Autophagy is also recognized as a mediator of survival and proliferation, and multiple pathways induce autophagy under conditions of cellular stress, including nutrient and energy depletion. High autophagic activity has been detected in fibrogenic cells from several tissues; however the role of autophagy in fibrogenesis and mesenchymal cells varies greatly in different tissues and settings, with contributions uncovered to energy metabolism and collagen turnover by fibrogenic cells. Because several chemical modulators of autophagy have already been identified, autophagy regulation constitutes a potential target for antifibrotic therapy. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

16.
17.
18.
The accumulation of UV photolysis products of amino acids tyrosine and tryptophan, which possess antioxidant activity, has been studied by the method of luminol-dependent chemiluminescence. The amount of antioxidant products was judged by the value of the total antioxidant potential of a UV-irradiated solution, the measure of which was the distance between the peaks of the chemiluminescence curve in the system 2,2′-azo-bis(2-amidinopropane) hydrochloride + luminol with a UV-irradiated and an unirradiated sample (induction period, τ i ). Simultaneously, the absorption and fluorescence spectra of unirradiared and UV-irradiated amino acid solutions were recorded. It was shown that exposure of a tryptophan solution to radiation led to accumulation of a fluorescent product N-formyl kynurenine (λem = 325 nm, λmax = 440 nm), and the curve of its accumulation was similar to the growth of antioxidant potential. When a tyrosine solution was irradiated, the main fluorescent product was dityrosine (λem = 310 nm, λmax = 415 nm). Nevertheless, the dose dependences of the formation of dityrosine and the total antioxidant potential were completely different. It was found that another product of tyrosine UV photolysis, dihydroxyphenylalanine, possessed pronounced antioxidant activity. It was concluded that the main antioxidant produced under UV irradiation of tryptophan is formyl kynurenine, and under irradiation of tyrosine it is dihydroxyphenylalanine.  相似文献   

19.
The accumulation of UV photolysis products of amino acids tyrosine and tryptophan, which possess an antioxidant activity, has been studied by the method of luminol-activated chemiluminescence. The amount of antioxidant products was judged by the value of the total antioxidant potential of a UV-irradiated solution, the measure of which was the distance between the peaks of the chemiluminescence curve in the system 2,2'-azo-bis(2-amidinopropane)hydrochloride + luminol in a UV-irradiated and an unirradiated samples (induction period, tau(i)). Simultaneously, the absorption and fluorescence spectra of unirradiared and UV-irradiated amino acid solutions were recorded. It was shown that, upon the exposure of a tryptophan solution to radiation, the accumulation of the fluorescent product N-formyl kynurenine (lambda(em) = 325 nm, lambda(max) = 440 nm) occures, and the curve of its accumulation was similar to the curve of growth of tau(i) photoproducts produced during UV-radiation. When a tyrosine solution was irradiated, the main fluorescent product was dityrosine (lambda(em) = 310 nm, lambda(max) = 415 nm). Nevertheless, the dose dependencies of the formation of dityrosine, and the total antioxidant potential (tau(i)) were completely different. It was found that another product of tyrosine UV-photolysis, dioxyphenylalanine, possessed a pronounced antioxidant activity. It was concluded that the main antioxidants produced under UV-irradiation of tryptophan is formyl kynurenine, and under the irradiation of tyrosine, dioxyphenylalanine.  相似文献   

20.
Cholesterol, 1, which is present in both the lung lining fluid and cell membranes of lung tissue, reacts with ozone in aqueous systems to give 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (2) as the major product. Reaction of 2 with 2,4-dinitrophenyl hydrazine (DNPH) in aqueous solutions, liposomes or lung extracts affords the anti and syn DNPH derivatives of 2 (3b and 3c) and of the rearrangement product 3,5-dihydroxy-B-norcholestane-6-carboxaldehyde (3a). These derivatives also are detected in lung tissue extracts from rats exposed to 1.3 ppm ozone for 12 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号