首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper-dependent cleavage of DNA by bleomycin   总被引:1,自引:0,他引:1  
DNA strand scission by bleomycin in the presence of Cu and Fe was further characterized. It was found that DNA degradation occurred readily upon admixture of Cu(I) or Cu(II) + dithiothreitol + bleomycin, but only where the order of addition precluded initial formation of Cu(II)--bleomycin or where sufficient time was permitted for reduction of the formed Cu(II)--bleomycin to Cu(I)--bleomycin. DNA strand scission mediated by Cu + dithiothreitol + bleomycin was inhibited by the copper-selective agent bathocuproine when the experiment was carried out under conditions consistent with Cu chelation by bathocuproine on the time scale of the experiment. Remarkably, it was found that the extent of DNA degradation obtained with bleomycin in the presence of Fe and Cu was greater than that obtained with either metal ion alone. A comparison of the sequence selectivity of bleomycin in the presence of Cu and Fe using 32P-end-labeled DNA duplexes as substrates revealed significant differences in sites of DNA cleavage and in the extent of cleavage at sites shared in common. For deglycoblemycin and decarbamoylbleomycin, whose metal ligation is believed to differ from that of bleomycin itself, it was found that the relative extents of DNA cleavage in the presence of Cu were not in the same order as those obtained in the presence of Fe. The bleomycin-mediated oxygenation products derived from cis-stilbene were found to differ in type and amount in the presence of added Cu vs. added Fe. Interestingly, while product formation from cis-stilbene was decreased when excess Fe was added to a reaction mixture containing 1:1 Fe(III) and bleomycin, the extent of product formation was enhanced almost 4-fold in reactions that contained 5:1, as compared to 1:1, Cu and bleomycin. The results of these experiments are entirely consistent with the work of Sugiura [Sugiura, Y. (1979) Biochem. Biophys. Res. Commun. 90, 375-383], who first demonstrated the generation of reactive oxygen species upon admixture of O2 and Cu(I)--bleomycin.  相似文献   

2.
Oxygen transfer from bleomycin-metal complexes   总被引:2,自引:0,他引:2  
Both Fe(III) and Cu(II) complexes of bleomycin (BLM), but not N-acetyl BLM . Fe(III), mediated the transfer of oxygen from iodosobenzene to organic substrates. In analogy with results obtained using certain cytochrome P-450 analogs, cis-stilbene was converted cleanly to the respective oxide, while no more than traces of trans-stilbene oxide were formed from trans-stilbene under identical conditions. The possible relevance of these observations to the degradation of DNA by bleomycin was also studied. In both the presence and absence of O2, BLM . Cu(II) . C6H5IO effected DNA degradation, as judged by the release of [3H]thymine from radiolabeled Escherichia coli DNA. These findings provide a valuable new assay system for the study of bleomycin analogs and suggest the possibility that bleomycin may function as an "oxygen transferase" in its degradation of DNA in situ.  相似文献   

3.
Copper-bleomycin has no significant DNA cleavage activity   总被引:1,自引:0,他引:1  
T Suzuki  J Kuwahara  Y Sugiura 《Biochemistry》1985,24(18):4719-4721
In contrast to a very recent report [Ehrenfeld, G. M., Rodriguez, L. O., Hecht, S. M., Chang, C., Basus, V. J., & Oppenheimer, N. J. (1985) Biochemistry 24, 81-92], the present careful reexamination demonstrated that copper-bleomycin systems have no significant DNA cleavage activity. In the presence of dithiothreitol, the bleomycin-Cu(II) complex showed little activity for DNA degradation. The DNA strand scission by the Cu(I)-bleomycin-dithiothreitol system was remarkably depressed by deferoxamine rather than by bathocuproine, suggesting the effect of trace amounts of contaminating iron in the experiments. It seems highly unlikely that the DNA breakage activity due specifically to the Cu(I)-bleomycin complex system is substantially strong. Our results indicate that the metal really relevant to the DNA cleavage by bleomycin is iron not copper.  相似文献   

4.
In the presence of NADPH and O2, NADPH-cytochrome P-450 reductase was found to activate Fe(III)-bleomycin A2 for DNA strand scission. Consistent with observations made previously when cccDNA was incubated in the presence of bleomycin and Fe(II) + O2 or Fe(III) + C6H5IO, degradation of DNA by NADPH-cytochrome P-450 reductase activated Fe(III)-bleomycin A2 produced both single- and double-strand nicks with concomitant formation of malondialdehyde (precursors). Cu(II)-bleomycin A2 also produced nicks in SV40 DNA following activation with NADPH-cytochrome P-450 reductase, but these were not accompanied by the formation of malondialdehyde (precursors). These findings confirm the activity of copper bleomycin in DNA strand scission and indicate that it degrades DNA in a fashion that differs mechanistically from that of iron bleomycin. The present findings also-establish the most facile pathways for enzymatic activation of Fe(III)-bleomycin and Cu(II)-bleomycin, provide data concerning the nature of the activated metallobleomycins, and extend the analogy between the chemistry of cytochrome P-450 and bleomycin.  相似文献   

5.
Degradation of structurally modified DNAs by bleomycin group antibiotics   总被引:1,自引:0,他引:1  
Bleomycin-mediated DNA strand scission has been shown to be diminished at certain sequences in proximity to 5-methylcytidines. We have investigated the molecular basis of this observed diminution using selective bleomycin (BLM) modifications at the C-terminus. Of the four different bleomycin congeners investigated, only bleomycin A2 and bleomycin BAPP were substantially affected by cytidine methylation. We have also examined the effect of other DNA modifications on bleomycin-mediated strand scission. Methylation at the N6 position of adenosine resulted in diminution of DNA cleavage by all four bleomycin congeners. The presence of bulky 5-(glucosyloxy)methyl groups in the major groove of T4 DNA had little effect on the efficiency of DNA strand scission mediated by bleomycin A2 or B2, suggesting the absence of important steric interactions between Fe(II).BLM and DNA in the major groove. In contrast, DNA cleavage mediated by bleomycin congeners was very sensitive to a major DNA conformational change, the B----Z transition. Salt and MgCl2 titrations of the DNA copolymers poly(dG-dC).poly(dG-dC) and poly(dG-MedC).poly(dG-MedC) demonstrated that bleomycin A2 and B2 did not cleave Z-DNA efficiently. In addition, circular dichroism titrations of these copolymers revealed that both bleomycin congeners increased the cation concentration necessary to induce the B----Z transition, implying that bleomycin preferentially binds to and stabilizes B-form DNA. These results are consistent with a model in which cytidine methylation at appropriate sequences of DNA is sufficient to induce subtle conformational changes that render the helix unreceptive to cleavage by some bleomycin congeners.  相似文献   

6.
DNA strand scission by activated bleomycin group antibiotics   总被引:1,自引:0,他引:1  
The bleomycins (BLMs) are a structurally related group of antitumor antibiotics used clinically for the treatment of certain malignancies. The mechanism of action of the BLM is believed to involve DNA strand scission, a process that requires O2 and an appropriate metal ion; the therapeutically relevant metal is probably iron or copper. DNA strand scission by activated Fe X BLM involves oxygenation C-4' of deoxyribose and leads to two sets of products. One set results from scission of the C-3'--C-4' bond of deoxyribose, with concomitant cleavage of the DNA chain. The other set of products consists of free bases and an alkali-labile lesion, the latter of which leads to DNA chain cleavage on subsequent treatment with base. The structures of all of these degradation products have now been established by direct comparison with authentic synthetic samples. Also studied was the activation of BLM with (mono)oxygen surrogates such as iodosobenzene. The chemistry of the activated BLM so formed was remarkably similar to that of activated cytochrome P-450 and structurally related metalloporphyrins, which suggests a mechanistic analogy between the two. Remarkably, both Fe X BLM and Cu X BLM were also shown to be activated by NADPH cytochrome P-450 reductase in a transformation that was dependent on metal ion, O2 and NADPH.  相似文献   

7.
Cu(I) and Cu(II) form stable 1:1 complexes with bleomycin (BLM). The affinity of both metals for the drug is greater than that of Fe(II). Cu(I) . BLM A2 binds to calf thymus DNA with about the same affinity as Fe(II) . BLM, as judged by DNA-induced fluorescence quenching of the bithiazole moiety of BLM. Based on 1H NMR and potentiometric titration data, the Cu(I) complexes of BLM are shown to have geometries very different than those of other BLM . metal(II) complexes studied thus far. As Cu(I) . BLM is oxidation-reduction active, its geometry is of importance in defining the structural requirements for BLM activity.  相似文献   

8.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
《Free radical research》2013,47(4-6):241-258
The asorbic acid (AH?) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH? oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH? oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH? but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH? oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2?produced by pulse radiolysis as a reductant, we found that AH? oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

10.
The degradation of DNA by bleomycin was studied in the absence and in the presence of added reducing agents, including 2-mercaptoethanol, dithiothreitol, reduced nicotinamide adenine dinucleotide phosphate, H2O2, and ascorbate, and in the presence of a superoxide anion generating system consisting of xanthine oxidase and hypoxanthine. In all cases, breakage of DNA was inhibited by low concentrations of chelators; where examined in detail, deferoxamine mesylate was considerably more potent than (ethylenedinitrilo)tetraacetic acid. Iron was found to be present in significant quantities in all reaction mixtures. Thus, the pattern of inhibition observed is attributed to the involvement of contaminating iron in the degradation of DNA by bleomycin. Cu(II), Zn(II), and Co(II) inhibit degradation of DNA by bleomycin and Fe(II) in the absence of added reducing agents. A model is proposed in which the degradation of DNA in these systems is dependent on the oxidation of an Fe(II)-bleomycin-DNA complex.  相似文献   

11.
The asorbic acid (AH-) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH- oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH- oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH- but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH- oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2-produced by pulse radiolysis as a reductant, we found that AH- oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

12.
The copper(II) complex of the clinically used antitumor agent bleomycin (Blm) has cytotoxic as well as antitumor properties. To understand the relationship of the bleomycin ligand, copper bleomycin, and other possible metal complexes of this agent, kinetic studies of the formation of Cu(II)Blm, ligand substitution reactions of CuBlm with ethylenediaminetetraaletic acid, and the redox reaction of CuBlm with thiols have been completed and interpreted along with previous studies of the thermodynamic stability of Cu2+ with bleomycin. Cu(II)Bm is found to be kinetically and thermodynamically stable in ligand substitution processes and is only slowly reduced and dissociated by sulfhydryl reagents. The rate constant of reduction of the complex by 2-mercaptoethanol (2-ME) at pH 7.4 and 25 degrees C is 9.5 X 10(-3) M-1 sec-1, explaining the inhibition of Fe2+-dependent strand scission of DNA by Cu2+ in the presence of 2-ME. CuBlm forms in preference to Fe(II)Blm and cannot be reduced and dissociated rapidly enough by thiols to liberate Blm and form the reactive iron complex. In agreement with the observed chemical stability of CuBlm, it is also shown that the complex is stable in human plasma and in the presence of Ehrlich cells suspended in ascites fluid. Interestingly, little CuBlm enters these cells to carry out cytotoxic reactions. Finally, it is shown that both Cu2+ and Zn2+, at equivalent concentrations to Fe2+, effectively inhibit the strand scission of DNA by Fe(II)Blm plus oxygen. However, at substoichiometric amounts of Cu2+, the ferroxidase activity of Blm enables the drug to remain effective in the strand-scission reaction, despite the lowered Cu-free Blm/Fe2+ ratio. These results are discussed in light of the proposed mechanism of action of bleomycin.  相似文献   

13.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

14.
Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

15.
Binding structures of metal complexes of deglyco-peplomycin (dPEP) on DNA were investigated by comparing dPEP complexes with those of bleomycin (BLM) using DNA fiber EPR spectroscopy. A low spin species of Fe(III)dPEP observed in the DNA pellet changed irreversibly to several high spin species after the fabrication of the DNA fibers. The g values of the high spin species were different from those of Fe(III)BLM. The high spin species could not be nitrosylated reductively to ON-Fe(II)dPEP, suggesting that some nitrogen atoms coordinated to the Fe(III) were displaced on the DNA fibers. On the other hand, O(2)-Co(II)dPEP remained intact on the fibers similarly to O(2)-Co(II)BLM but with an increased randomness in the orientation on the DNA. In contrast to Cu(II)BLM, a considerable amount of Cu(II)dPEP bound almost randomly on B-form DNA fibers. These results indicated that the sugar moiety in peplomycin or bleomycin is playing an important role in enhancing the stability of the metal-binding domain and in the stereospecificity of the binding on DNA.  相似文献   

16.
Resveratrol (1, 3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes and other food products, is known as an antioxidant and cancer chemopreventive agent. However, 1 was shown to induce genotoxicity through a high frequency of micronucleus and sister chromatid exchange in vitro and DNA-cleaving activity in the presence of Cu(II). The present study was designed to explore the structure-activity relationship of 1 in DNA strand scission and to characterize the substrate specificity for Cu(II) and DNA binding. When pBR322DNA was incubated with 1 or its analogues differing in the number and positions of hydroxyl groups in the presence of Cu(II), the ability of 4-hydroxystilbene analogues to induce DNA strand scission is much stronger than that of 3-hydroxy analogues. The high binding affinity with both Cu(II) and DNA was also observed by 4-hydroxystilbene analogues. The reduction of Cu(II) which is essential for activation of molecular oxygen proceeded by addition of 1 to the solution of the Cu(II)-DNA complex, while such reduction was not observed with the addition of isoresveratrol, in which the 4-hydroxy group of 1 is changed to the 3-position. The results show that the 4-hydroxystilbene structure of 1 is a major determinant of generation of reactive oxygen species that was responsible for DNA strand scission.  相似文献   

17.
To elucidate the mechanism of DNA strand scission by bleomycin, a d(C-G-C-G-C-G) duplex was treated with the bleomycin-iron ion complex in the presence of H2O2 and degradation products (1, 2, cytosine and deoxyguanosine 5'-phosphate) were identified. 1 and 2 contain a carboxymethyl group attached to the 3'-terminal phosphoryl group of d(C-Gp) and d(C-G-C-Gp), respectively. These compounds were identified by UV, 1H and 31P NMR spectroscopy and paper electrophoresis. 1 was synthesized from the protected dinucleotide and glycolic acid and the proton NMR spectrum was identical to that of 1 obtained as a degradation product. Thus the oligonucleotide fragments produced by the action of bleomycin on DNA were directly identified and cleavage of the C3'-C4' bond of the sugar residues was proved.  相似文献   

18.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

19.
The natural product jadomycin B, isolated from Streptomyces venezeulae ISP5230, has been found to cleave DNA in the presence of Cu(II) ions without the requirement for an external reducing agent. The efficiency of DNA cleavage was probed using supercoiled plasmid DNA in buffered solution as a model environment. EC?? and t(?) values for cleavage were 1.7 μM and 0.75 h, respectively, and varied ± 5% with the particular batch of plasmid and jadomycin employed. While UV-vis spectroscopy indicates that the cleavage event does not involve direct binding of jadomycin B to DNA, a stoichiometric Cu(II) preference for optimum cleavage suggests a weak binding interaction between jadomycin B and Cu(II) in the presence of DNA. The Cu(II)-mediated cleavage is greatly enhanced by UV light, which implicates the jadomycin B radical cation and Cu(I) as potential intermediates in DNA cleavage. Evidence in favor of this hypothesis was derived from a mechanistic assay which showed reduced cleavage as a function of added catalase and EDTA, scavengers of H?O? and Cu(II), respectively. Thus, jadomycin B may serve as a source of electrons for Cu(II) reduction, producing Cu(I) which reacts with H?O? to form hydroxyl radicals that cause DNA strand scission. In addition, scavengers of hydroxyl radicals and superoxide also display inhibitory effects, underscoring the ability of jadomycin B to produce a powerful arsenal of deleterious oxygen species when copper is present.  相似文献   

20.
Copper(II) facilitates bleomycin-mediated unwinding of plasmid DNA   总被引:1,自引:0,他引:1  
M J Levy  S M Hecht 《Biochemistry》1988,27(8):2647-2650
The unwinding of plasmid DNA by bleomycin A2 (BLM A2) was investigated by use of two-dimensional gel electrophoresis. It was found that Cu2+ ions greatly facilitated the unwinding of topoisomers of plasmid DNA by BLM A2 at concentrations where cupric ions alone had no effect on DNA supercoiling. The concentration of BLM A2 required for observable unwinding was reduced at least 100-fold in the presence of equimolar Cu2+. A plot of [Cu2+] vs extent of DNA unwinding in the presence of 10(-4) M BLM A2 gave a curve consistent with the action of cupric ions on BLM in an allosteric fashion, possibly rearranging the drug into a conformation that facilitates DNA unwinding. The participation of the metal center in enhancing DNA unwinding via direct ionic interaction with one or more negatively charged groups on the DNA duplex also seems possible. Further analysis of the structural factors required for BLM-mediated DNA unwinding was carried out with Cu2+ + BLM demethyl A2, the latter of which differs from BLM A2 only in that it lacks a methyl group, and associated positive charge, at the C-terminus. Cu(II).BLM demethyl A2 was found to be much less effective than Cu(II).BLM A2 as a DNA unwinding agent, emphasizing the strong dependence of this process on the presence of positively charged groups within the BLM molecule. These findings constitute the first direct evidence that the metal center of BLM can participate in DNA interaction, as well as in the previously recognized role of oxygen binding and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号