首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throneberry GO 《Plant physiology》1967,42(11):1472-1478
Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected.

With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction.

Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction.

  相似文献   

2.
It has been reported that the mitochondrial cytochromes and citrate cycle enzymes occur in constant proportions to each other and increase or decrease roughly in parallel in response to various stimuli. The purpose of this study was to determine whether this proportionality is an obligatory consequence of the way in which mitochondria are assembled. Severe iron deficiency was used to bring about decreases of the iron-containing constituents of the mitochondrial respiratory chain in skeletal muscle. Cytochrome c concentration and cytochrome oxidase activity were decreased approximately 50%, while succinate dehydrogenase and NADH dehydrogenase activities were decreased by 78% in iron-deficient muscle. On electron microscopic examination, mitochondria in iron-deficient muscles had relatively sparse numbers of cristae. The iron deficiency had little or no effect on the levels of a range of mitochondrial matrix enzymes, including citrate synthase, isocitrate dehydrogenase, fumarase, aspartate aminotransferase, 3-hydroxyacyl-CoA dehydrogenase, 3-ketoacid-CoA transferase, and acetoacetyl-CoA thiolase. These results show that the usual constant proportions between the constituents of the mitochondrial respiratory chain and matrix enzymes are not obligatory; they provide evidence that mitochondrial matrix enzymes and respiratory chain constituents can be incorporated into mitochondria independently and that the ratios between them can vary within wide limits.  相似文献   

3.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

4.
Mitochondria isolated from minute amounts (100-500 mg) of human skeletal muscle displayed a very high rotenone-resistant NADH cytochrome c reductase activity. Moreover, compared to succinate cytochrome c reductase activity, a low rate of rotenone-sensitive NADH cytochrome c reductase activity was measured when using standard procedures to disrupt mitochondrial membranes. Only a drastic osmotic shock in distillated water as a mean to disrupt mitochondrial membrane was found to strongly increase the actual rate of the rotenone-sensitive activity. This was accompanied by a decrease in the rotenone-insensitive activity. Using such a simple procedure, the NADH cytochrome c reductase was found 70-80% inhibited by rotenone and roughly equivalent to 70-85% of the activity of the succinate cytochrome c reductase.  相似文献   

5.
The chemical and enzymatic properties of the cytochrome system in the particulate preparations obtained from dormant spores, germinated spores, young vegetative cells, and vegetative cells of Bacillus subtilis PCI219 were investigated. Difference spectra of particulate fractions from dormant spores of this strain suggested the presence of cytochromes a, a(3), b, c(+c(1)), and o. All of the cytochrome components were present in dormant spores and in germinated spores and vegetative cells at all stages which were investigated. Concentrations of cytochromes a, a(3), b, and c(+c(1)) increased during germination, outgrowth, and vegetative growth, but that of cytochrome o was highest in dormant spores. As the cytochrome components were reducible by reduced nicotinamide adenine dinucleotide (NADH), they were believed to be metabolically active. Difference spectra of whole-cell suspensions of dormant spores and vegetative cells were coincident with those of the particulate fractions. NADH oxidase and cytochrome c oxidase were present in dormant spores, germinated spores, and vegetative cells at all stages after germination, but succinate cytochrome c reductase was not present in dormant spores. Cytochrome c oxidase and succinate cytochrome c reductase activities increased with growth, but NADH oxidase activity was highest in germinated spores and lowest in vegetative cells. There was no striking difference between the effects of respiratory inhibitors on NADH oxidase in dormant spores and those on NADH oxidase in vegetative cells.  相似文献   

6.
The influence of dietary iron deficiency, lead exposure or their combination on certain enzymes, and the accumulation of Pb and essential metal levels in vital organs of rats was investigated. Iron deficiency caused alterations in the activity of muscle, hepatic and renal succinate dehydrogenase, and hepatic mitochondrial succinate cytochrome c reductase, whereas Pb exposure had no influence on these enzymes. There was no synergistic effect of the two factors on the activity of the enzymes. However, feeding of a Fe-deficient diet during Pb exposure enhanced the accumulation of Pb in soft tissues and flat bones. The hepatic copper and zinc levels were lowered upon either feeding a Fe-deficient diet or Pb exposure. However, the synergistic effect of the two factors was evident in hepatic Cu, but not in hepatic Zn. The feeding of a Fe-deficient diet decreased liver, kidney, and spleen levels of Fe, whereas Pb exposure decreased kidney and spleen Fe. The synergistic influence of the two factors could be observed only in liver and kidney.  相似文献   

7.
The classic spectrophotometric method for identification and characterization of respiratory enzymes has been used for the study of the cytochrome system of Aplysia. Particles have been prepared from the buccal mass and the gizzard muscles. Difference spectra taken on isolated particle suspensions show the presence of a complete cytochrome system composed of five components: cytochrome a, b, c, c(1), and a(3). As indicated by the peaks of the sharp absorption bands of their reduced forms, they are very similar to the cytochromes of mammals and yeast. Cytochrome a(3) has been identified as the terminal oxidase of Aplysia muscle by means of the spectrophotometric study of its carbon monoxide compound. Further evidence for the presence of a cytochrome system in Aplysia was obtained by assays of the catalytic activities of the isolated particles: succinic dehydrogenase, cytochrome oxidase, DPNH cytochrome c reductase. The cytochrome oxidase activity was strongly inhibited by carbon monoxide in the dark; the inhibition was totally relieved by light. Cytochrome c has been extracted and purified from muscle tissue. Its spectrum is almost identical with that of the mammalian pigment both in the oxidized and reduced forms. From the hepatopancreas a new respiratory enzyme has been extracted which has many physical and chemical properties in common with cytochrome h from terrestrial snails.  相似文献   

8.
Cytochrome oxidase was purified twentyfold from mitochondria of seedlings of wheat genotypes 28, 31 MS, and 31 MS/28. The enzyme of the hybrid exceeded in activity the parental enzymes. Mixtures of cytochrome oxidase of the parents exhibited complementation in that they approached the activity of the hybrid cytochrome oxidase. Hybrid mitochondria also exhibited heterosis in NADH: cytochrome c reductase activity. Complementation by parent mitochondria was observed for this enzyme also. The Michaelis constant of cytochrome oxidase and NADH: cytochrome reductase was markedly less in the hybrid and the mixture than in the parents. Difference spectra revealed the following: strain 28 had cytochromes a and b but was deficient in cytochrome c; strain 31 MS had cytochromes b and c but no a; the hybrid had all three cytochromes, as did the mixture. The relationship of cytochromes to heterosis and complementation is considered.This work was supported by DeKalb AgResearch, Inc.  相似文献   

9.
1. An NADH-ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH-ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH-ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH-ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes.  相似文献   

10.
An NADH cytochrome c reductase has been identified in plasma membrane fractions from neutrophils in addition to the superoxide producing NADPH oxidase which has been extensively studied by other investigators. Activation of neutrophils resulted in increased enzyme activities but to different degrees; the NADH cytochrome c reductase increased 2 fold in specific activity and the NADPH oxidase 30 fold. Treatment of the plasma membrane fraction with sonication and differential centrifugation yielded a particulate fraction (R2) with a 2 fold increase in specific activities of both enzymes and concentrations of cytochrome b and FAD. The cytochrome b in the preparation was not reduced under anaerobic conditions by either NADH or NADPH. Treatment of preparations of R2 with deoxycholate or potassium thiocyanate separated the two enzymes yielding particulate preparations with only NADPH oxidase or NADH cytochrome c reductase activity, respectively.  相似文献   

11.
The systemic fungicide carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) at 100 mum inhibited succinate cytochrome c reductase in mitochondria from Ustilago maydis and Saccharomyces cerevisiae. It did not have any effect on reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase. Succinate coenzyme Q reductase was also inhibited, but NADH coenzyme Q reductase was not. When dichlorophenolindophenol (DCIP) was used as the terminal acceptor of electrons from the oxidation of succinate, carboxin was very effective in inhibiting succinate-DCIP reductase. Carboxin was inhibitory to succinic dehydrogenase assayed with phenazine methosulfate plus DCIP when intact mitochondria were used as the enzyme source but not when solubilized enzyme was used. The main site of action of carboxin, therefore, appears to lie between succinate and coenzyme Q. The dioxide analogue of carboxin was also effective in inhibiting succinate-cytochrome c reductase, succinate-coenzyme Q reductase, or succinate-DCIP reductase, whereas the monoxide analogue was less effective in inhibiting these enzymes.  相似文献   

12.
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.  相似文献   

13.
A succinate-coenzyme Q reductase (complex II) was isolated in highly purified form from Ascaris muscle mitochondria by detergent solubilization, ammonium sulfate fractionation and gel filtration on a Sephadex G-200 column. The enzyme preparation catalyzes electron transfer from succinate to coenzyme Q1 with a specific activity of 1.2 mumol coenzyme Q1 reduced per min per mg protein at 25 degrees C. The isolated complex II is essentially free of NADH-ferricyanide reductase, reduced CoQ2-cytochrome c reductase and cytochrome c oxidase and consists of four major polypeptides with apparent molecular weights of 66 000, 27 000, 12 000 and 11 000 and two minor ones with Mr of 36 000 and 16 000. The complex II contained cytochrome b-558, a major constituent cytochrome of Ascaris mitochondria, at a concentration of 3.6 nmol per mg protein, but neither other cytochromes nor quinone. The cytochrome b-558 in the complex II was reduced with succinate. In the presence of Ascaris NADH-cytochrome c reductase (complex I-III) (Takamiya, S., Furushima, R. and Oya, H. (1984) Mol. Biochem. Parasitol. 13, 121-134), the cytochrome b-558 in complex II was also reduced with NADH and reoxidized with fumarate. These results suggest the cytochrome b-558 to function as an electron carrier between NADH dehydrogenase and succinate dehydrogenase in the Ascaris NADH-fumarate reductase system.  相似文献   

14.
Chlorpromazine was a potent inhibitor of O2-dependent malate oxidation, but not of H2 oxidation in Azotobacter vinelandii membranes. However, chlorpromazine did not significantly affect the activity of malate reductase or the reduction of cytochromes c and d. In the presence of chlorpromazine, cytochrome o failed to form a complex with CO. The site of action of chlorpromazine seems to be in the cytochromes c to cytochrome o branch, the pathway utilized by malate, succinate and NADH, but not by H2.  相似文献   

15.
As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is located. Important variables that were studied included adding NADH, adding NADPH, induction of enzymes by intake of phenobarbital and the effects of oxygen. Reduction to nonparamagnetic derivatives and oxidation back to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADH or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital, and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylamines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

16.
The quantification of mitochondrial enzyme activities in skeletal muscle samples of patients suspected of having mitochondrial myopathies is problematic. Therefore, we have evaluated different methods for the determination of activities cytochrome c oxidase and NADH:CoQ oxidoreductase in human skeletal muscle samples. The measurement of cytochrome c oxidase activity in the presence of 200 microM ferrocytochrome c and the detection of NADH:CoQ oxidoreductase as rotenone-sensitive NADH:CoQ(1) reductase resulted in comparable citrate synthase-normalized respiratory chain enzyme activities of both isolated mitochondria and homogenates from control human skeletal muscle samples. These methods allowed the precise detection of deficiencies of respiratory chain enzymes in skeletal muscle of two patients harboring only 20 and 27% of deleted mitochondrial DNA, respectively. Therefore, citrate synthase-normalized respiratory chain activities can serve as stable reference values for the determination of a putative mitochondrial defect in human skeletal muscle.  相似文献   

17.
The effects of monoclonal antibodies to bovine and Paracoccus denitrificans cytochromes c (Kuo, L.M. and Davies, H.C. (1983) Mol. Immunol. 20, 827-838) in the reactions of the cytochromes c with cytochrome c oxidase, reductase and peroxidase were studied. Spectrophotometric assays were employed, under conditions where binding of cytochrome c to the enzymes appears to be rate-limiting. Less than stoichiometric amounts of antibodies to P. denitrificans cytochrome c added to the cytochrome rendered some of it nonoxidizable or nonreducible by the P. denitrificans membrane-bound electron transport system and decreased the rate constant with the remaining cytochrome c. The antibodies appear to affect both electron transport reactions (blocking effects) with the oxidase and reductase and binding effects (effects on rate constants) and to distinguish between the two. Different ratios of antibody site to cytochrome c gave different extents of blocking of the reductase as compared with the oxidase reaction. Differences were also apparent in the effect of these antibodies on the reaction of yeast peroxidase and the oxidase with the P. denitrificans cytochrome c. Antibodies to bovine and P. denitrificans cytochromes c had considerably less effect on the reactions of the bovine cytochrome with bovine oxidase and reductase. One antibody was inhibitory to the oxidase reaction with bovine cytochrome c, but not to that with the reductase. Also, an antibody which inhibited the oxidase reaction had no effect on the reaction with yeast peroxidase. The data give evidence that the interaction areas on cytochrome c for oxidase and reductase and peroxidase are not identical, although they may be nearby.  相似文献   

18.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ +k+)-ATPase and 5'-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

19.
The effects of the intensity of iron and zinc deficiencies respectivelyon a range of enzymes in Neurospora have been determined. Irondeficiency reduced catalase, peroxidase, cytochrome c reductase,and oxidase (in that order) and DPN'ase activity whereas Zn-deficiencyreduced glutamic dehydrogenase. TPNH and DPNH diaphorases weredepleted by Zn or Fe deficiency and these enzymes were reconstitutedwithin 24 hours of returning the deficient metal in vivo tothe felts. Responses of other enzymes to a shortage of eithermetal varied greatly depending on the degree of the deficiency.  相似文献   

20.
The effects of chloramphenicol on the morphology and respiratory enzymes of BHK-21 cells in spinner culture have been examined with time. Cells treated with chloramphenicol double twice before growth ceases; these cells have increased size as measured by several techniques. Mitochondria are enlarged and appear to degenerate with prolonged treatment. Cytochrome c oxidase and succinate cytochrome c reductase activities are reduced while there is no decrease in the activities of monoamine oxidase, glutamate dehydrogenase or NADPH-cytochrome c reductase. Cytochromes aa3 and b disappear on treatment while cytochromes c + c1 appears to be unaffected. All these effects are reversible if chloramphenicol is removed within a limited period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号