首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entamoeba histolytica, the protozoan responsible for human amoebiasis, has a complex genome, whose linear chromosomes and DNA circles have so far eluded detailed analysis. We report the detection by transmission electron microscopy of nuclear vesicles (0.05-0.3 microm in diameter) carrying DNA in E. histolytica trophozoites. In late anaphase many of these nuclear vesicles were found to be organized in structures of approximately 2.5 x 1 microm, in association with chromosomes and microtubules. In glutaraldehyde-fixed and detergent-treated trophozoites, nuclear vesicles displayed a non-membranous envelope. Binding of phosphotungstate stain and recognition by serum from patients with systemic lupus erythematosus indicated that these vesicles contain DNA. Similar DNA carrier vesicles were found in the cytoplasm and in the E. histolytica kinetoplast-like organelle (EhkO). By Feulgen staining, we detected DNA carrier vesicles entering or leaving the nuclei, suggesting a structural relationship between the nuclear vesicles and the vesicles present in the EhkOs.  相似文献   

2.
3.
The DNA methylation status of the protozoan parasite Entamoeba histolytica was heretofore unknown. In the present study, we developed a new technique, based on the affinity of methylated DNA to 5-methylcytosine antibodies, to identify methylated DNA in this parasite. Ribosomal DNA and ribosomal DNA circles were isolated by this method and we confirmed the validity of our approach by sodium bisulfite sequencing. We also report the identification and the characterization of a gene, Ehmeth, encoding a DNA methyltransferase strongly homologous to the human DNA methyltransferase 2 (Dnmt2). Immunofluorescence microscopy using an antibody raised against a recombinant Ehmeth showed that Ehmeth is concentrated in the nuclei of trophozoites. The recombinant Ehmeth has a weak but significant methyltransferase activity when E.histolytica genomic DNA is used as substrate. 5-Azacytidine (5-AzaC), an inhibitor of DNA methyltransferase, was used to study in vivo the role of DNA methylation in E.histolytica. Genomic DNA of trophozoites grown with 5-AzaC (23 µM) was undermethylated and the ability of 5-AzaC-treated trophozoites to kill mammalian cells or to cause liver abscess in hamsters was strongly impaired.  相似文献   

4.

Background

The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme.

Methodology and Results

To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of ∼1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size ∼46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids—aspartate-332, aspartate-361, and tyrosine-323—by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity.

Conclusion

To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.  相似文献   

5.
Circular DNA of Entamoeba histolytica encodes ribosomal RNA   总被引:4,自引:0,他引:4  
The presence of repeated DNA sequences encoding RNA in Entamoeba histolytica has been reported. In the present study we demonstrate by agarose gel electrophoresis. DNase digestion and electron microscopic analysis that these genes are located on extrachromosomal circular DNA molecules with an approximate size of 26 kb. Detection of replication intermediates suggests the episomal nature of these molecules. Amplified, extrachromosomal rRNA genes appear to be a common feature among the lower eukaryotes, occurring more commonly as linear molecules and less commonly as circles. Entamoeba histolytica is 1 of the few organisms studied in which rRNA genes are located predominantly on extrachromosomal circles.  相似文献   

6.
Circular DNA of Entamoeba histolytica Encodes Ribosomal RNA   总被引:1,自引:0,他引:1  
. The presence of repeated DNA sequences encoding RNA in Entamoeba histolytica has been reported. In the present study we demonstrate by agarose gel electrophoresis, DNase digestion and electron microscopic analysis that these genes are located on extrachromosomal circular DNA molecules with an approximate size of 26 kb. Detection of replication intermediates suggests the episomal nature of these molecules.
Amplified, extrachromosomal rRNA genes appear to be a common feature among the lower eukaryotes, occurring more commonly as linear molecules and less commonly as circles. Entamoeba histolytica is 1 of the few organisms studied in which rRNA genes are located predominantly on extrachromosomal circles.  相似文献   

7.
Characterization of a cytochalasin D-resistant mutant of the human parasite Entamoeba histolytica capable of growing at 10 μM cytochalasin is described. The mutant cells also show resistance to 5 mM colchicine and 100 μM cytochalasin B, drugs proved deleterious for wild type trophozoites. The mutants show increased osmotic fragility and electric mobility but reduced phagocytic activity, and agglutination by Concanavalin A. On the other hand pinocytic activity remains unaltered when compared with the wild type cells. Polymerized actin, seen by staining with phalloidin, often appears polarized to one end of the trophozoites and forms few of the endocytic invaginations found in wild type amebas. An altered distribution of part of the actin could explain the differences in surface properties and motility observed in the mutant amebas.  相似文献   

8.
Characterization of a cytochalasin D-resistant mutant of the human parasite Entamoeba histolytica capable of growing at 10 microM cytochalasin is described. The mutant cells also show resistance to 5 mM colchicine and 100 microM cytochalasin B, drugs proved deleterious for wild type trophozoites. The mutants show increased osmotic fragility and electric mobility but reduced phagocytic activity, and agglutination by Concanavalin A. On the other hand pinocytic activity remains unaltered when compared with the wild type cells. Polymerized actin, seen by staining with phalloidin, often appears polarized to one end of the trophozoites and forms few of the endocytic invaginations found in wild type amebas. An altered distribution of part of the actin could explain the differences in surface properties and motility observed in the mutant amebas.  相似文献   

9.
In eukaryotes, polyadenylation of pre-mRNA 3' end is essential for mRNA export, stability, and translation. Here we identified and cloned a gene codifying for a putative nuclear poly(A) polymerase (EhPAP) in Entamoeba histolytica. Protein sequence alignments with eukaryotic PAPs showed that EhPAP has the RNA-binding region and the PAP central domain with the catalytic nucleotidyl transferase domain described for other nuclear PAPs. Recombinant EhPAP expressed in bacteria was used to generate specific antibodies, which recognized two EhPAP isoforms of 60 and 63kDa in nuclear and cytoplasmic extracts by Western blot assays. RT-PCR assays showed that EhPap mRNA expression varies in multidrug-resistant trophozoites growing in different emetine concentrations. Moreover, EhPap mRNA expression is about 10- and 7-fold increased in G1 and S phase, respectively, through cell cycle progression. These results suggest the existence of a link between EhPAP expression and MDR and cell cycle regulation, respectively.  相似文献   

10.

Background

Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis.

Methodology and Results

EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica.

Conclusion

This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν.  相似文献   

11.
12.
We report here the presence of cytoplasmic DNA arranged in networks in the trophozoites of the human parasite Entamoeba histolytica. Cytoplasmic DNA was detected in live trophozoites in a structure that we called EhkO, using the fluorescent dye acridine orange, and by in situ hybridization to trophozoites with a rDNA probe. The EhkO was found in the axenically grown clones A, L6 (strain HM1:IMSS) and MAVax (strain MAV) and in the polyxenically grown clone MAVpx (strain MAV). Bacteria present in MAVpx did not cross hybridize with the DNA probe neither in in situ hybridization or in Southern blot experiments. Autoradiography of metabolically [3H]thymidine-labeled trophozoites showed the presence of EhkO, and an EhkO-enriched fraction, purified from a nuclei-free extract and examined by light microscopy, exhibited [3H]thymidine incorporation into this structure. DNA was purified from the EhkO and enriched nuclear fractions and analyzed by transmission electron microscopy. The EhkO fraction contained DNA networks resembling those of trypanosome kDNA, whereas nuclear DNA was present mainly as linear molecules and some circles. Our findings imply that E. histolytica may be taxonomically more closely related to the Trypanosomatidae than previously suspected.  相似文献   

13.
Schulz EC  Roth HM  Ankri S  Ficner R 《PloS one》2012,7(6):e38728
In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNA(Asp), tRNA(Val), tRNA(Gly)). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 ?, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth.  相似文献   

14.
15.
16.
17.
In cells, the alpha-anomers of aldoses are the preferred metabolizable substrates, while beta-anomers of aldoses play their role in glycan structure. In the cytoplasm, alpha- and beta-anomers of aldoses interconvert through the enzyme termed aldose 1-epimerase or mutarotase (EC 5.1.3.3). We have identified a mutarotase gene in Entamoeba histolytica, the causative agent of non-bacterial dysentery in humans. Cloning and characterization of this gene in two strains of the parasite (HM-1:IMSS and Rahman) that differ in their pathogenicity, revealed that the sequence is identical in both strains. A recombinant E. histolytica mutarotase was produced as well as specific antibodies that recognized a 38 kDa protein in trophozoite lysates of both strains. Mutarotase activity was observed with the recombinant protein as well as in lysates of both HM-1:IMSS and Rahman, the former exhibiting a slightly higher mutarotase activity. Finally, we have shown by complementation that overexpression of the E. histolytica mutarotase in a mutarotase defective Escherichia coli strain restores the ability of these bacteria to grow in minimal medium with phenyl-beta-galactopyranoside as the sole carbon source.  相似文献   

18.
19.
Entamoeba histolytica contains and secretes acid phosphatase, which has been proposed as a virulence factor in some pathogenic microorganisms. In this work, we purified and characterised a membrane-bound acid phosphatase (MAP) from E. histolytica HM-1:IMSS and studied the effect of different chemical compounds on the secreted acid phosphatase and MAP activities. MAP purification was accomplished by detergent solubilisation, and affinity and ion exchange chromatographies. The enzyme showed a pI of 5.5-6.2, an optimum pH of 5.5, and a Km value of 1.14 mM with p-nitrophenyl phosphate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号