首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Amino acid analysis of the amine oxidase of Aspergillus niger (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) showed a composition similar to that of bovine plasma enzyme. One molecule of enzyme contained 25 Cys residues. It was shown that 9 to 11 residues of Cys were titrated to be SH groups. The amine oxidase reaction was markedly inhibited by metal ions (Cu2+, Hg2+, Ag+). The enzyme was inactivated with SH reagents (phenyl mercuric acetate, Cl-HgBzO-) and the extent of this inactivation was dependent on the time of incubation with SH reagents. Also, the Cl-HgBzO- -inactivated enzyme was reactivated with cysteine and this reactivation was biphasic with the time of incubation. The Cl-HgBzO--inactivated amine oxidase was compared with the native enzyme in their reactivity with phenylhydrazine and their spectral properties. The results showed that the Cl-HgBzO--inactivated enzyme had lower reactivity with phenylhydrazine than the native enzyme and had higher absorbance values than the native enzyme around 400 nm wavelengths.  相似文献   

2.
The conditions for the sulfhydryl oxidase (SOX) production and activity from an Egyptian isolate of Aspergillus niger were optimized. Purification and determination of the kinetic properties (K(m) and V(max)) of the purified enzyme have been done. The possibility for the SOX induction using L-Cys (as a natural substrate) was studied to determine whether SOX could be produced as an inducible enzyme in addition to being a constitutive one (i.e. whether induction leads to increase SOX production and activity or not). The optimum temperature and pH for its activity were found to be 60 degrees C and 5.5, respectively. The activity of the induced intracellular SOX, was measured according to Ellman's method using the standard GSH oxidation where it reached 94% while that of non-induced one reached only 27.6%. This wide difference in activity between the induced and non-induced SOX indicates the successful L-Cys-induction of the SOX production (i.e. SOX from A. niger AUMC 4947 is an inducible enzyme). Molecular characterization of the pure SOX revealed that it is constituted of two 50-55 KDa subunits. K(m) and V(max) were found to be 6.0 mM and 100 microM/min/mg respectively.  相似文献   

3.
The conditions for the sulfhydryl oxidase (SOX) production and activity from an Egyptian isolate of Aspergillus niger were optimized. Purification and determination of the kinetic properties (K m and V max) of the purified enzyme have been done. The possibility for the SOX induction using L-Cys (as a natural substrate) was studied to determine whether SOX could be produced as an inducible enzyme in addition to being a constitutive one (i.e. whether induction leads to increase SOX production and activity or not). The optimum temperature and pH for its activity were found to be 60°C and 5.5, respectively. The activity of the induced intracellular SOX, was measured according to Ellman’s method using the standard GSH oxidation where it reached 94% while that of non-induced one reached only 27.6%. This wide difference in activity between the induced and non-induced SOX indicates the successful L—Cys-induction of the SOX production (i.e. SOX from A. niger AUMC 4947 is an inducible enzyme). Molecular characterization of the pure SOX revealed that it is constituted of two 50–55 KDa subunits. K m and V max were found to be 6.0 mM and 100 μM/min/mg respectively.  相似文献   

4.
5.
Subunit structure of glucose oxidase from Aspergillus niger   总被引:2,自引:0,他引:2  
J J O'Malley  J L Weaver 《Biochemistry》1972,11(19):3527-3532
  相似文献   

6.
Action mechanism of glucose oxidase of Aspergillus niger   总被引:1,自引:0,他引:1  
  相似文献   

7.
ω-Aminohexyl-Sepharose 4B served as an excellent biospecific adsorbent for affinity chromatography of amine oxidase (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) from Aspergillus niger. The enzyme was completely adsorbed on this affinity resin when applied to a column in 0.1 M potassium phosphate buffer (pH 7.2). Although a small part of the enzyme was retained on the column through ionic interaction and eluted with 1.0 M potassium phosphate buffer (pH 7.2), most of the enzyme adsorbed was eluted with 0.5 M potassium phosphate buffer (pH 7.2) containing 10 mM butylamine. Essentially no retention of the enzyme on a column of ε-aminopentyl-Sepharose or δ-aminobutyl-Sepharose occurred under the same conditions, indicating that an appropriate length (more than approx. 12 Å) of a hydrocarbon extension between the agarose matrix and the terminal amino group would be necessary for efficient adsorption of amine oxidase. The modification of the enzyme with 3-methyl-2-benzothiazolinone hydrazone (carbonyl inhibitor) or dithionite (reducing agent) resulted in loss of the ability to bind to ω-aminohexyl-Sepharose. I was also demonstrated that the affinity chromatography on ω-aminohexyl-Sepharose can be used as a powerful means of purifying this enzyme from crude extracts of Aspergillus niger. All of the three adsorbents were effective as a substrate in the amine oxidase reaction, but their substrate activities were as low as the corresponding free diamines.  相似文献   

8.
Summary Aspergillus niger NRRL-3, an organism used for the industrial scale production of d-gluconic acid and glucose oxidase (EC 1.1.3.4), was subjected to mutagenesis and selection for acid production on diagnostic media containing methyl red. The plates contained 0.1 M d-glucose, a concentration that does not produce a color change in the medium surrounding mycelia of the parental strain under the conditions employed. Mutagenized spores yielded occasional colonies which were able to grow rapidly and were surrounded by a reddish zone. A number of such presumptive mutants were selected and isolated. Twenty-six such strains were grown in shaken cultures with liquid media containing 0.01, 0.1 or 0.5 M d-glucose, harvested, disrupted and the specific activity of d-glucose oxidase determined. Seven of the mutant strains had glucose oxidase specific activities markedly higher than the parental strain.Paper No. 8393, Nebraska Agricultural Research Division.  相似文献   

9.
10.
Interaction of halide ions with Aspergillus niger glucose oxidase   总被引:1,自引:0,他引:1  
M J Rogers  K G Brandt 《Biochemistry》1971,10(25):4630-4635
  相似文献   

11.
A simple method is described for the immobilization of Aspergillus niger GIV-10 which produces an extracellular glucose oxidase. A. niger conidia were immobilized on sintered glass Raschig rings, pumice stones or polyurethane foam. Mycella growing out from the spores produced extracellular glucose oxidase: the highest production was with the pumice stone carrlers. This technique facilitates the growth of the filamentous cultures in the spongy structure of a support with continuous accumulation of biomass. After 24 to 36 h, a culture liquid with 2.7 to 3.1 U of glucose oxidase/ml was obtained. This procedure also made possible repeated batch enzyme production and as many as 25 subsequent 24-h batches could be fermented by using the same carrier with only a small loss of glucose oxidase activity.The authors are with the Institute of Microbiology, M. Curie-Sklodowska University, Akademicka 19, 20-003 Lublin, Poland.  相似文献   

12.
Summary This report describes the expression of cloned glucose oxidase gene (god) in glucose-oxidase-deficient mutants (God) of Aspergillus niger NRRL-3, the use of this gene for the elevation of glucose oxidase (GOD) productivity in the parental strain, and the further improvement of GOD production by subjecting the transformants to nitrous acid mutagenesis.Correspondence to: F. A. Sharif  相似文献   

13.
14.
The kinetics of glucose oxidase (GOD) excretion by recombinant Aspergillus niger NRRL-3 (GOD3-18) were investigated using enzymatic activity measurements as well as gel electrophoresis techniques. The majority of GOD was produced during rapid growth in the first phase of the cultivation. The high excretion rate during this phase did not prevent the endocellular accumulation of GOD up to 40% of the total soluble cell protein demonstrating that the production rate exceeded the excretion rate of the enzyme into the culture medium. During the second phase of the cultivation, excretion of GOD occurred at a slower rate, although the majority of GOD produced during the first phase was excreted during the second phase of the cultivation. At the end, about 90% of the total GOD produced was recovered from the culture medium. Two-dimensional gel electrophoresis provided evidence that endo- and exocellular GOD were indistinguishable, revealing identical posttranslational modifications (e.g., signal sequence cleavage, glycosylation pattern). The results demonstrate that the initial steps of the secretory pathway are fast and that the excretion of the enzyme into the culture fluid was most likely delayed due to retention by the cell wall. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
The production of the enzyme glucose oxidase by Aspergillus niger is well documented. However, its distribution within the fungal culture is less well defined. Since the enzyme location impacts significantly on enzyme recovery, this study quantifies the enzyme distribution between the extracellular fluid, cell wall, cytoplasm and slime mucilage fractions in an A. niger NRRL-3. The culture was separated into the individual fractions and the glucose oxidase activity was determined in each. The extracellular fluid contained 38% of the total activity. The remaining 62% was associated with the mycelia and was distributed between the cell wall, cytoplasm and slime mucilage in the proportions of 34, 12 and 16%, respectively. Intracellular cytoplasmic and cell wall sites were confirmed using immunocytochemical labelling of the mycelia. In the non-viable cell, the mycelial-associated enzyme was distributed between these sites, whereas in the viable cell, it was predominantly associated with the cell wall. The distribution of the enzyme activity indicates that recovery from the solids would result in a 38% loss, whereas recovery from the extracellular fluid would result in a 62% loss. The results also suggest, however, that this 62% loss could be reduced to around 34% by disintegrating the solids prior to separation due to the contribution of the enzyme in the cytoplasm and slime mucilage. This was confirmed by independently establishing the percentage activity in the liquid and solid portions of a disintegrated culture as 62 and 38%, respectively.  相似文献   

16.
Omega-Aminohexyl-Sepharose 4B served as an excellent biospecific adsorbent for affinity chromatography of amine oxidase (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) from Aspergillus niger. The enzyme was completely adsorbed on this affinity resin when applied to a column in 0.1 M potassium phosphate buffer (pH 7.2). Although a small part of the enzyme was retained on the column through ionic interaction and eluted with 1.0 M potassium phosphate buffer (pH 7.2), most of the enzyme adsorbed was eluted with 0.5 M potassium phosphate buffer (pH 7.2) containing 10 mM butylamine. Essentially no retention of the enzyme on a column of epsilon-aminopentyl-Sepharose or delta-aminobutyl-Sepharose occurred under the same conditions, indicating that an appropriate length (more than approx. 12 A) of a hydrocarbon extension between the agarose matrix and the terminal amino group would be necessary for efficient adsorption of amine oxidase. The modification of the enzyme with 3-methyl-2-benzothiazolinone hydrazone (carbonyl inhibitor) or dithionite (reducing agent) resulted in loss of the ability to bind to omega-aminohexyl-Sepharose. It was also demonstrated that the affinity chromatography on omega-aminohexyl-Sepharose can be used as a powerful means of purifying this enzyme from crude extracts of Aspergillus niger. All of the three adsorbents were effective as a substrate in the amine oxidase reaction, but their substrate activities were as low as the corresponding free diamines.  相似文献   

17.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

18.
19.
20.
Summary The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both enzymes were located in microbodies. In addition, when the organism was grown on glucose with methylamine as a nitrogen source, amine oxidase activity was detected in the microbodies. These organelles can therefore be designated as peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号