首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
近年来的研究表明,Hedgehog信号通路在肿瘤的发生发展中具有重要的作用,该通路基因突变或异常表达将导致多种器官肿瘤的发生,并与Wnt、MAPK等信号通路相互作用,共同调节肿瘤的发生发展。我们简要综述了Hedgehog信号通路在乳腺癌发生发展中的重要作用,旨在了解乳腺癌发生、发展的分子机制.  相似文献   

2.
The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway—Patched–Smoothened–Gli—has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH–CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.  相似文献   

3.
Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for future in-vitro and in-vivo analysis to control different cancers.  相似文献   

4.
During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.  相似文献   

5.
During recent years, alterations in proteins of the endocytic pathway have been associated with tumors. Disrupted regulation of the endocytic pathway is a relatively unstudied mechanism of tumorigenesis, which can concomitantly disrupt several different signaling pathways to affect growth, differentiation and survival. Several endocytic proteins have been identified, either as part of tumor-associated translocations or to have the ability to transform cells. Here, we summarize the information known about huntingtin interacting protein 1 (HIP1), an endocytic protein with transforming properties that is involved in a cancer-causing translocation and which is overexpressed in a variety of human cancers. We describe the known normal functions of HIP1 in endocytosis and receptor trafficking, the evidence for its role as an oncoprotein and how HIP1 might be altered to promote tumorigenesis.  相似文献   

6.
Suppressors of hedgehog signaling   总被引:4,自引:0,他引:4  
Subversion of signals that physiologically suppress Hedgehog pathway results in aberrant neural progenitor development and medulloblastoma, a malignancy of the cerebellum. The Hedgehog antagonist RENKCTD11 maps to chromosome 17p13.2 and is involved in the withdrawal of the Hedgehog signaling at the granule cell progenitor transition from the outer to the inner external germinal layers, thus promoting growth arrest and differentiation. Deletion of chromosome 17p, the most frequent genetic lesion observed in this tumor, is responsible for the loss of function of RENKCTD11, resulting in upregulated Hedgehog signaling and medulloblastoma. Persistence of signals that limit Hedgehog activity is also associated with malignancy. Hedgehog signaling- induced downregulation of ErbB4 receptor expression is attenuated in medulloblastoma subsets in which the extent of Hedgehog pathway activity is limited, thus favoring the accumulation of ErbB4 with imbalanced alternative splice CYT-1 isoform over the CYT-2. This is responsible for both Neuregulin ligand-induced CYT-1-dependent prosurvival activity and loss of CYT-2-mediated growth arrest.  相似文献   

7.
8.
The Hedgehog (Hh) signaling pathway plays important roles in embryonic growth and patterning in different organisms. Abnormal activity of the Hh signaling pathway has been associated to cancers, holoprosencephaly and autism spectrum disorders. The backbone and side chain resonance assignments of a Drosophila Hh autoprocessing domain have been determined based on triple-resonance experiments with the [13C, 15N]-labeled and [2H, 13C, 15N])-labeled proteins.  相似文献   

9.
Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild‐type mice and Smoothened (Smo)‐floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo‐deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.  相似文献   

10.
Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.  相似文献   

11.
Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.  相似文献   

12.
Medulloblastomas often activate Hedgehog signaling inappropriately. The finding that mutations in components of this pathway are present only in few tumors suggests that additional genetic or epigenetic lesions can also lead to Hedgehog dysregulation. Chromosome 17p deletion, the most frequently detected genetic lesion in medulloblastoma, has recently been identified as a cause of unrestrained Hedgehog signaling. Such a deletion leads to the loss of REN(KCTD11), a novel Hedgehog antagonist, thus removing a checkpoint of Hedgehog-dependent events during cerebellum development and tumorigenesis. The disruption of additional Hedgehog modulators that map to 17p suggests a rationale for a multitargeted therapeutic strategy aimed at interrupting the cooperative activation of the Hedgehog pathway.  相似文献   

13.
14.
Eye induction and eye field separation are the earliest events during vertebrate eye development. Both of these processes occur much earlier than the formation of optic vesicles. The insulin-like growth factor (IGF) pathway appears to be essential for eye induction, yet it remains unclear how IGF downstream pathways are involved in eye induction. As a consequence of eye induction, a single eye anlage is specified in the anterior neural plate. Subsequently, this single eye anlage is divided into two symmetric eye fields in response to Sonic Hedgehog (Shh) secreted from the prechordal mesoderm. Here, we report that B56epsilon regulatory subunit of protein phosphatase 2A (PP2A) is involved in Xenopus eye induction and subsequent eye field separation. We provide evidence that B56epsilon is required for the IGF/PI3K/Akt pathway and that interfering with the PI3K/Akt pathway inhibits eye induction. In addition, we show that B56epsilon regulates the Hedgehog (Hh) pathway during eye field separation. Thus, B56epsilon is involved in multiple signaling pathways and plays critical roles during early development.  相似文献   

15.
16.
Gli proteins and Hedgehog signaling: development and cancer.   总被引:8,自引:0,他引:8  
  相似文献   

17.
The two signalling proteins, Wingless and Hedgehog, play fundamental roles in patterning cells within each metamere of the Drosophila embryo. Within the ventral ectoderm, Hedgehog signals both to the anterior and posterior directions: anterior flanking cells express the wingless and patched Hedgehog target genes whereas posterior flanking cells express only patched. Furthermore, Hedgehog acts as a morphogen to pattern the dorsal cuticle, on the posterior side of cells where it is produced. Thus responsive embryonic cells appear to react according to their position relative to the Hedgehog source. The molecular basis of these differences is still largely unknown. In this paper we show that one component of the Hedgehog pathway, the Fused kinase accumulates preferentially in cells that could respond to Hedgehog but that Fused concentration is not a limiting step in the Hedgehog signalling. We present direct evidence that Fused is required autonomously in anterior cells neighbouring Hedgehog in order to maintain patched and wingless expression while Wingless is in turn maintaining engrailed and hedgehog expression. By expressing different components of the Hedgehog pathway only in anterior, wingless-expressing cells we could show that the Hedgehog signalling components Smoothened and Cubitus interruptus are required in cells posterior to Hedgehog domain to maintain patched expression whereas Fused is not necessary in these cells. This result suggests that Hedgehog responsive ventral cells in embryos can be divided into two distinct types depending on their requirement for Fused activity. In addition, we show that the morphogen Hedgehog can pattern the dorsal cuticle independently of Fused. In order to account for these differences in Fused requirements, we propose the existence of position-specific modulators of the Hedgehog response.  相似文献   

18.
Hedgehog ligands interact with receptor complexes containing Patched (PTC) and Smoothened (SMO) proteins to regulate many aspects of development. The mutation W535L (SmoM2) in human Smo is associated with basal cell skin cancers, causes constitutive, ligand-independent signaling through the Hedgehog pathway, and provides a powerful means to test effects of unregulated Hedgehog signaling. Expression of SmoM2 in Xenopus embryos leads to developmental anomalies that are consistent with known requirements for regulated Hedgehog signaling in the eye and pancreas. Additionally, it results in failure of midgut epithelial cytodifferentiation and of the intestine to lengthen and coil. The midgut mesenchyme shows increased cell numbers and attenuated expression of the differentiation marker smooth muscle actin. With the exception of the pancreas, differentiation of foregut and hindgut derivatives is unaffected. The intestinal epithelial abnormalities are reproduced in embryos or organ explants treated directly with active recombinant hedgehog protein. Ptc mRNA, a principal target of Hedgehog signaling, is maximally expressed at stages corresponding to the onset of the intestinal defects. In advanced embryos expressing SmoM2, Ptc expression is remarkably confined to the intestinal wall. Considered together, these findings suggest that the splanchnic mesoderm responds to endodermal Hedgehog signals by inhibiting the transition of midgut endoderm into intestinal epithelium and that attenuation of this feedback is required for normal development of the vertebrate intestine.  相似文献   

19.
Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase (MBOAT) family, catalyses the covalent attachment of palmitate to the N-terminus of Hedgehog proteins. Palmitoylation is a post-translational modification essential for Hedgehog signalling. This review explores the mechanisms involved in Hhat acyltransferase enzymatic activity, similarities and differences between Hhat and other MBOAT enzymes, and the role of palmitoylation in Hedgehog signalling. In vitro and cell-based assays for Hhat activity have been developed, and residues within Hhat and Hedgehog essential for palmitoylation have been identified. In cells, Hhat promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where Shh palmitoylation occurs. Palmitoylation is required for efficient delivery of secreted Hedgehog to its receptor Patched1, as well as for the deactivation of Patched1, which initiates the downstream Hedgehog signalling pathway. While Hhat loss is lethal during embryogenesis, mutations in Hhat have been linked to disease states or abnormalities in mice and humans. In adults, aberrant re-expression of Hedgehog ligands promotes tumorigenesis in an Hhat-dependent manner in a variety of different cancers, including pancreatic, breast and lung. Targeting hedgehog palmitoylation by inhibition of Hhat is thus a promising, potential intervention in human disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号