首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Anthrozo?s》2013,26(3):211-224
Abstract

In Italy the law forbids euthanizing shelter dogs unless they are severely ill or dangerous. This has created a problem: many dogs are housed for long periods of time in shelters. It is important to the welfare of these dogs for us to find methods to increase successful adoption rates. The aim of this study was to evaluate the effect of different management factors such as the number of dogs in a pen, Temporary Adoption Programs (TAPs), and animal-owner-related characteristics on successful adoptions of kenneled dogs. The study included 763 dogs, 92 of whom were dogs showing behavioral problems. The age of the dogs upon arrival at the shelter was the most important determinant for length of stay, with younger dogs being adopted faster (Kruskal-Wallis, H = 150.27; df = 3; n = 733; p < 0.001). Dogs up to six months of age (n = 73) were adopted more quickly than older dogs (average length of stay: 1.4 vs. 6.4 months). The year of admittance was also significant since dogs who were admitted in a year in which more dogs were brought to the shelter spent more time in the shelter before being re-homed (Kruskal-Wallis, H = 96.18; df = 2; n = 733; p < 0.001). Dogs' gender had no effect on length of stay (Mann-Whitney, U = 64563; Z = 0.81; p = ns; n1 = 389; n2 = 344). Temporary Adoption Programs had a significant positive effect in reducing the return rate when the final adopter was the same person who had “temporarily” adopted the dog (Fisher exact test, p = 0.0063). Return rate was also associated with behavioral problems. Fearful dogs were returned more often than dogs with other problems (Fisher exact test, p = 0.029). It is concluded that, although young age is the most important factor leading to quick adoption, programs which include increased human interaction, and special training for dogs with behavioral problems, could aid in the successful re-homing of shelter dogs.  相似文献   

2.
Abstract

The title compound 1 is prepared from thymidine 5′-phos-phorodiamidate (2) and inorganic pyrophosphate (3) in anhydrous DMF, at 30–32°C. The products of alkaline hydrolysis of 1, at room temperature, are: thymidine 5′-phosphoramidate (4), thymidine 3′-phosphoramidate (8) and thymidine (9) as well as 3 and inorganic trimetaphosphate (10). In 1 N NH4OH, 1 reacts with cytidine (15) to form cytidylyl-/2T(3′)-5′/-thymidine (16) and a mixture of cytidine 2′,3′-cyclic phosphate (17) and 9.  相似文献   

3.
Abstract

The first chemical synthesis of 3-amino-1-β-D-ribofuranosyl-s-triazolo[5,1-c]-s-triazole (6) is described. Direct glycosylation of 3-amino-5(7)H-s-triazolo[5,1-c]-s-triazole (2) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (3) in the presence of TMS-triflate gave 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-s-triazolo[5, 1-c]-s-triazole (4) which, on ammonolysis, gave 6. The absolute structure of 6 is determined by X-ray diffraction techniques employing Mo Kα radiation. The structure is solved by direct methods and refined to the R value of 0.044 by using a full-matrix least-squares method. The sugar of 6 has a 3T2 configuration. The torsion angles about the C5′–C4′ bond are both gauche and the torsion angle about the glycosidic bond is in the anti range. Each azole ring of the aglycon is planar and the dihedral angle between the planes of the rings is 3.6°.  相似文献   

4.
Abstract

The synthesis of several 5′-substituted derivatives of ribavirin (1) and tiazofurin (3) are described. Direct acylation of 1 with the appropriate acyl chloride in pyridine-DMF gave the corresponding 5′-O-acyl derivatives (4a-h). Tosylation of the 2′, 3′-O-isopropylidene-ribavirin (6) and tiazofurin (11) with p-toluenesulfonyl chloride gave the respective 5′-O-p-tolylsulfonyl derivatives (7a and 12a), which were converted to 5′-azido-5′-deoxy derivatives (7b and 12b) by reacting with sodium/lithium azide. Deisopropylidenation of 7b and 12b, followed by catalytic hydrogenation afforded 1-(5-amino-5-deoxy-β-D)-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (10b) and 2 - (5 -amino- 5-deoxy- β-D-ribofuranosyl) thiazole-4-carboxamide (16), respectively. Treatment of 6 with phthalimide in the presence of triphenylphosphine and diethyl azodicarboxylate furnished the corresponding 5′-deoxy-5′-phthaloylamino derivative (9). Reaction of 9 with n-butylamine and subsequent deisopropylidenation provided yet another route to 10b. Selective 5′-thioacetylation of 6 and 11 with thiolacetic acid, followed by saponification and deisopropylidenation afforded 5′-deoxy-5′-thio derivatives of 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (8a) and 2-β-D-ribofuranosylthiazole-4-carboxamide (15), respectively.  相似文献   

5.
Abstract

The following targets can be considered in the development of antiviral agents: (i) DNA polymerase via dThd kinase, (ii) S-adenosylhomocysteine hydrolase; and in the development of antitumor agents: (iii) dTMP synthetase and (iv) protein synthesis via the 2–5A pathway.  相似文献   

6.
Abstract

Fusion of 2-trimethylsilylpyridine and tetra-O-acetyl-aldehydo-D-xylose or 2,3:4,5-di-O-isopropylidene-aldehydo-L-arabinose led, after removing of the protecting groups, to 2-(pentitol-1-yl)pyridines of D-gulo and D-ido or L-manno configurations. Dehydration of the sugar-chain with D-gulo and D-ido configurations gave the corresponding 2′,5′-anhydro derivatives, whereas 2-(5-O-isopropyl-L-manno-pentitol-1-yl)-pyridine was the only compound formed by dehydration of the sugar-chain with L-manno configuration. Structural proofs are based on 1H and 13C NMR spectra.  相似文献   

7.
Abstract

Treatment of D-xylose (1) with 0.5% methanolic hydrogen chloride under controlled conditions followed by benzoylation and acetolysis afforded crystalline 1-O-acetyl-2, 3, 5-tri-O-benzoyl-α-D-xylofuranose (4) in good yield. Coupling of 4 with 2, 4-bis-trimethylsilyl derivatives of 5-alkyluracils (methyl, ethyl, propyl and butyl) (5a-5d), 5-fluorouracil (5e) and uracil (5f) in acetonitrile in the presence of stannic chloride gave 1-(2,3,5-tri-O-benzoyl-β-D-xylofuranosyl)-nucleosides (6a-6f). Saponification of 6 with sodium methoxide afforded 1-β-D-xylofuranosyl-5-substituted uracils (7a-7f). Condensation of 4 with free adenine in similar fashion and deblocking gave carcinostatic 9-β-D-xylofuranosyladenine (7g).  相似文献   

8.
Abstract

1H and 31P NMR spectra of cAMP (1) and both diastereomers of cAMPS (2 and 3) were compared with these of structurally related bicyclic phosphate 4 and phosphorothioates 5 and 6. Conformational analysis was also performed by NMR techniques for bicyclic phosphoranilidates 7 and 8 and (Rp)-cdAMP anilidate (9). Chair conformation is predominant for all investigated compounds 18, while the phosphoranilidate 9 exists in solution in chair-twist equilibrium. Thus, antagonistic properties of (Rp)-cAMPS with respect to cAMP are inferred by the change in the overall molecular shape caused by the presence of the bulky sulfur atom in the equatorial position of the cAMPS molecule.  相似文献   

9.
Abstract

Reactjon of (2-acetoxyethoxy)methyl bromide with the silylated lumazine bases (1-6) in the presence of n-Bu4NI leads to the formation of the nucleosides 8, 10, 12, 14, 16 and 18 respectively. Deacetylation with methanolic ammonia afforded the free nucleosides 9, 11, 13, 15, 17 and 19, respectively, in good yields. Structural proofs of the newly synthesized compounds are based on elemental analyses, UV and 1H-NMR spactra. None of the acyclic nucleosides exhibited antiviral activity against HSV-1 in vitro.  相似文献   

10.
Abstract

The synthesis of pyrazolo[3,4-d]pyrimidine ribonucleoside 3′, 5′-cyclic phosphates related to cAMP, cIMP and cGMP has been achieved for the first time. Phosphorylation of 4-amino-6-methylthio-1-β-D-ribo-furanosylpyrazolo[3,4-d]pyrimidine (1) with POCl3 in trimethyl phosphate gave the corresponding 5′-phosphate (2a). DCC mediated intramolecular cyclization of 2a gave the corresponding 3′, 5′-cyclic phosphate (3a), which on subsequent dethiation provided the cAMP analog 4-amino-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidine 3′, 5′-cyclic phosphate (3b). A similar phosphorylation of 6-methylthio-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one (5), followed by cyclization with DCC gave the 3′, 5′-cyclic phosphate of 5 (9a). Dethiation of 9a with Raney nickel gave the cIMP analog 1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (9b). Oxidation of 9a with m-chloroperoxy benzoic acid, followed by ammonolysis provided the cGMP analog 6-amino-1-β-D-ribofuranosylpyrazolo [3, 4-d] pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (7). The structural assignment of these cyclic nucleotides was made by UV and H NMR spectroscopic studies.  相似文献   

11.
Abstract

A synthesis of 2,4-dideazaribavirin ( 2 ), brunfelsamidine ribonucleoside ( 8c ) and certain related derivatives are described for the first time using the stereospecific sodium salt glycosylation procedure. Glycosylation of the sodium salt of pyrrole-3-carbonitrile ( 4 ) with 1-chloro-2, 3-O-t-isopropylidene-5-O-t-butyldimethylsilyl-α-D-ribofuranose ( 5 ) gave exclusively the corresponding blocked nucleoside ( 6 ) with β-anomeric configuration, which on deprotection provided 1-β-D-ribofuranosylpyrrole-3-carbonitrile ( 7 ). Functional group tranformation of 7 gave 2 , 8c and related 3-substituted pyrrole ribonucleosides. These compounds are devoid of any significant antiviral/antitumor activity invitro.  相似文献   

12.
Abstract

Acid catalyzed isomerization of 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (4) yields 1-aryl-4-(D-galacto-pentitol-1-yl)imidazoles (8) which can be also obtained by reductive desulphuration of 1-aryl-2-benzylthio-4-(D-galacto-pentitol-1-yl)imidazoles (6). Compounds (4) were obtained by desulphuration with Raney nickel from 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-imidazolidine-2-thiones (1) or 1-aryl-2-benzylthio-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (2).  相似文献   

13.
Abstract

1-Methyl- and 1-aryl-(1,2-dideoxy-D-glyofurano)[2,1-d]-imidazolidine-2-thiones having the configurations β-D-glycero-L-gluco (4), β-D-glycero-D-ido (5—8), α-D glycerol-D-galacto (9—10) and β-D-glycero-D-talo (11, 12) are prepared by reaction of 2-amino-2-deoxy-aldoses with methyl and aryl isothiocyanates. 1-Aryl-(1,2-dideoxy–β-D-glycero-L-gluco-heptofurano)[2,1-d]imidazolidine-2-thiones (1—3) have been converted into 1-aryl-4-(D-galacto-pentitol-1-yl)-4-imidazo-line-2-thiones (24—26) by acid catalysed isomerization.  相似文献   

14.
Abstract

Treatment of ψ-uridine (3) with α-acetoxyisobutyryl chloride in acetonitrile gave, after deprotection, a mixture of four products: 5-(2-chloro-2-deoxy-β-D-arabinofuranosyl)uracil (10a), its 3′-chloro xylo isomer (11a), 2′-chloro-2′-deoxy-ψ-uridine (9a) and 4,2′-anhydro-ψ-uridine (8a). Each component was isolated by column chromatography. Compound 9 was converted to the known 1,3-dimethyl derivative 2 by treatment with DMF-dimethylacetal. Treatment of 10 and 11 with NaOMe/MeOH afforded the same 4,2′-anhydro-C-nucleoside 8. The 1,3-dimethyl analogues of 10 and 11, however, were converted to 2′,3′-anhydro-1,3-dimethyl-ψ-uridine (13) upon base treatment. The epoxide 13 was also prepared in good yield by treatment of 10 and 11 with DMF-dimethylacetal.  相似文献   

15.
Abstract

The syntheses of 6-(4) and 7-p-chlorphenyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-lumazine (6), was well as the debenzoylation to the corresponding free nucleosides 5 and 7, were improved. Thiation of 4 and 6 by P4S10 led in excellent yields to 4-thiolumazine nucleosides (8, 10) which could be deblocked to 9 and 11 and converted on treatment with ammonia into the isopterin-N-1- ribofuranosides 13 and 14. 2,2′-Anhydro-nucleoside formation worked well with 5 and 7 respectively to give 15 and 16, which formed on acid hydrolysis the 6- and 7-substituted 1-β-D-arabinofuranosyl-lumazines 18 and 19. The new nucleosides have been characterized by UV and 1H-NMR spectra.  相似文献   

16.
Abstract

The attempted ribosylation reaction of 8-nitro-theophylline (2) with 1-o-acetyl-2, 3, 5-tri-o-benzoyl-D-ribo-furanose (5) failed to give any nucleoside product, whereas the reaction of 8-chlorotheophylline (3) with 5 afforded the 8-chloro-7-(2,3,5-tri-o-benzoyl) β-D-ribofuranosyltheophylline (6) in good yield. The product 6 reacted with benzylamine producing the 8-benzylamino-7-(2, 3, 5-tri-O-benzoyl) β-D-ribo-furanosyltheophylline (10), which could also be synthesised by ribosylation of 8-benzylaminotheophylline (8) with 5. Debenzoylation of 6 and 10 gave the corresponding 7-β-D-ribofuranosyltheophylline nucleosides (7) and (11), respectively. Compound 7 could be converted into 11 by reaction with benzylamine. The newly synthesised compounds have been characterised by elemental analysis, 1H-NMR and UV spectra.  相似文献   

17.
Abstract

A new, facile synthesis of 7-methyl-8-oxoguanosine is reported. 2-Chloro-7-methylpurine-6, 8-dione (5) was silylated with hexamethyldi-silazane and the silylated intermediate, 6, glycosylated with 1-0-acetyl-2, 3, 5-tri-0-benzoyl-D-ribofuranose to yield 2-chloro-7-methyl-9-(2′, 3′,-5′-tri-0-benzoyl-β-D-ribofuranosyl) purin-6, 8-dione (8). Deprotection of 8 with sodium hydroxide in aqueous methanol gave 2-chloro-7-methyl-9-(β-D-ribofuranosyl) purine-6,8-dione (9), which was aminated with liquid ammonia or methanolic ammonia to yield 7-methyl-8-oxoguanosine (3).  相似文献   

18.
Abstract

The C-nucleoside analogs 6,7-dimethyl-3-β-D-erythrofuranosyl-1-phenylpyrazolo[3,4-b]quinoxaline 4 and 3-β- D -erythrofuranosyl-1-p-fluorophenylpyrazolo[3,4-b]quinoxaline 8 were prepared by dehydration of the polyhydroxyalkyl chain of 6,7-dimethyl-1-phenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 3 and 1-p-fluorophenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 7, respectively. The structure and anomeric configuration of the products were determined by n.m.r. spectroscopy. The mass spectra and biological activities in connection with chemical constitution are discussed.  相似文献   

19.
Abstract

The synthesis and antiherpetic activity of 9-[[[2-hydroxy-1-(hydroxymethyl)ethyl]thio]methy1]guanine (4) and 1-[[[2-hydroxy-1-(hydroxymethyl)ethyl]thio]methy]cytosine (6), the side-chain thio analogues of ganciclovir (3) and BW A1117U (5), are described. The sidechain synthon 1,3-bis(benzyloxy)-2-[(chloromethyl)thio]propane (11) was prepared in four steps from 1,3-bis(benzyloxy)-2-propanol (7). Alkylation of 2-amino-6-chloro-9H-purine with 11 provided the intermediate 9-substituted-2-amino-6-chloropurine 12, which was conveniently converted to 4 in two steps. Reaction of a fivefold excess of cytosine with 11 provided the desired 1-isomer 14, which was debenzylated to give 6. In contrast with ganciclovir (3) and BW A1117U (5), neither 4 nor 6 had significant in vitro activity against human cytomegalovirus.  相似文献   

20.
Abstract

5′-O-[N-(Aminoacyl)sulfamoyl]-uridines and -thymidines 4a-12a and 4b-12b have been synthesized and tested against Herpes Simplex virus type 2 (HSV-2) and as cytostatics. Condensation of 2′,3′-O-isopropylidene-5′-O-sulfamoyluridine and 3′-O-acetyl-5′-O-sulfamoylthymidine with the N-hydroxysuccinimide esters of Boc-L-Ser(Bzl), (2R, 3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbuta-noic acid [(2R, 3S-N-Z-AHPBA], (2R, 3S) and (2S, 3R)-N-Boc-AHPBA gave 4a,b-7a,b, which after removal of the protecting groups provided 1Oa,b-12a,b. A study of the selective removal of the O-Bzl protecting group from the L-Ser derivatives 4a,b, without hydrogenation of the pyrimidine ring, has been carried out. Only the fully protected uridine derivatives 4a-7a did exhibit high anti-HSV-2 activity, and none of the synthesized compounds showed significant cytostatic activity against HeLa cells cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号