首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conferin (1), a new isoflavone, has been isolated from the ethyl acetate soluble fraction of Caragana conferta Benth. along with seven known compounds, namely biochanin A (2), p-hydroxybenzoic acid (3), 3,5- dimethoxybenzoic acid (4), ursolic acid (5), erythrodiol (6), pinoresinol (7), and syringresinol (8), reported for the first time from this species. The structure of the new isoflavone was deduced on the basis of spectroscopic studies. Compounds 1 and 2 were investigated for biological activities and showed significant anti-inflammatory activity in carrageenan induced paw edema of rats. Evaluation of antioxidant activity by the radical scavenging method indicated that compound 1 is a potent antioxidant while 2 is moderately active. It was also shown that the reducing capability of compound 2 was remarkably increased in a concentration dependent manner as compared to 1. Compound 1 showed moderate inhibitory activity against the enzyme lipoxygenase, while 2 showed weak activity.  相似文献   

2.
Abstract

The composition of the products of reaction of 1-(2,3-anhydro-5-O-benzoyl-β-D-lyxofuranosyl)uracil (1) with NH4N3 was studied by a reverse-phase HPLC system which was found to separate the 3-azido-arabino 2 and 2-azido-xylo 3 isomers that were formed. The use of a 10:1 ratio of NH 4 N 3 to 1 in refluxing EtOH was found to minimize ring opening at C-2 (7%). The higher stereoselectivity of ring opening produced by using a large excess of NH 4 N 3 was suppressed by conducting the reaction in DMF. Preventing the escape of the NH 3 by-product only resulted in debenzoylation. The isolation of pure, crystalline 3 was achieved by reverse-phase preparative HPLC. Separation from the arabino isomer was also effected by debenzoylation and selective acetonide formation with the xylo isomer, which allowed facile isolation of the latter by normal phase chromatography. Hydrolysis of the acetonide 7 provided unprotected 2-azido-xylo nucleoside 6, which was also obtained by NaOMe treatment of 3. The mechanistic basis for the stereoselectivity of epoxide opening is discussed.  相似文献   

3.
Abstract

The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N 6-trichloroacetyl-2′,3′-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5′,5′-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5′,5′-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.  相似文献   

4.
(±)-Muscone (3-methylcyclopentadecanone) (8) was synthesized from ethyl 6-methyl-8-oxopentadecanedioate (1) in a 31.9% over-all yield. Ethylene ketal (2) of 1 was cyclized to the acyloin mixture (3) by the acyloin condensation. Reduction of 3 gave 9,9-ethylenedioxy-7-methylcyclopentadecane-1,2-diol (4) which afforded 1,2-ditosyloxy derivative (5). By detosylation according to the Tipson-Cohen procedure, 5 was converted to 9,9-ethylenedioxy-7-methylcyclopentadec-1-ene (6) which was hydrogenated to 8.  相似文献   

5.

Seasonal variations in precipitation changed the community composition and microbial activity in a hypersaline, tropical microbial mat, in Cabo Rojo, PR. Using a combination of dissection, light, and transmission electron microscopy, terminal restriction fragment length polymorphism (T-RFLP), in situ microelectrode studies, and 35 S isotope incubations, we documented the major differences between wet and dry seasons. During the wet season (precipitation 177 mm), cyanobacterial (green layer) and anoxyphototrophic (pink layer) communities, as well as the black FeS layer were well-developed, and T-RFLP patterns indicated a diverse community. The rate of oxygenic photosynthesis was 49 μ M min ? 1 . Aerobic respiration was 29 μ M min ? 1 , and sulfate reduction was 264 nmol cm ? 3 h ? 1 . During the dry season (precipitation 51 mm), cyanobacteria and anoxyphototrophs were less diverse and abundant, and T-RFLP patterns were less complex. The O 2 production rate was reduced to 9 μ M min ? 1 , as was O 2 consumption (7 μ M min ? 1 ) and sulfate reduction (26 nmol cm ? 3 h ? 1 ). Aragonite, calcite, halite, and quartz were the predominant minerals. Seasonal differences were found in the green and pink layers for both halite and quartz. Gypsum was not observed, likely due to a sample handling artifact. The fluctuations in community composition and metabolic activity, principally reflected in fluctuations in binding and trapping potential of the uppermost mat community, might be responsible for the observed differences in mineralogy.  相似文献   

6.
The reactivity of N-tosylindole (4) in the presence of aluminum chloride was studied, and two types of oligomerization of 4 were observed. One type was condensation between both pyrrole parts (dimers 5 and 6 and trimer 7) and the other was between a pyrrole part and a benzene part of each indole nucleus (dimers 8 and 9).  相似文献   

7.
Variation in inhibition of real-time PCR was investigated with DNA extracts from 50 aquifer sediment core samples of 5 cm length collected through a 2.5 meter vertical profile across a landfill leachate plume. The inhibition was quantified using an internal control of the green fluorescent protein ( gfp ) gene, which was spiked into the real-time PCR reactions. The inhibition was investigated at two gfp gene concentrations: at 1.7 · 10 7 gfp gene copies/g sediment (5.1 · 10 4 gfp gene copies/PCR reaction) and at 1.7 · 10 5 gfp gene copies/g sediment (5.1 · 10 2 gfp gene copies/PCR reaction). Despite the low TOC content of the sediment (average 0.4 mg C/g dw) the average real-time PCR response was partially inhibited, compared to a reference (pure water), at both high and low gfp concentrations. The relative amplification (reference = 1) was 0.85 ± 0.20 (high) and 0.66 ± 0.23 (low), showing significantly (P < 0.05) stronger inhibition at the lower target gene concentration. The inhibition of the real-time PCR did not show a systematic variation in the vertical profile related to plume position but variations were significant on a small scale of 5–15 cm depth intervals. One of the 50 samples failed to produce a signal with either concentration of the gfp internal control and three other samples inhibited real-time PCR at both high and low gfp concentration. These 4 samples, which were the samples with the highest inhibition, were the only DNA extracts with a visible brown colouration, indicating contents of humic-like substances. Elevated absorbance at 400 nm of these samples also indicated that humic-like substances were responsible for inhibition. However, other factors not associated with either absorbance or TOC may have contributed to the inhibition in less inhibited samples since the variation in real-time PCR response could not be sufficiently explained by absorbance or TOC. The results of this study suggest that an internal control is needed in real-time PCR reactions with DNA from environmental samples due to variation in inhibition to correctly quantify the number of target genes, especially at low target gene concentrations, when dilution of DNA extracts is not practical.  相似文献   

8.

Background  

The periodic pattern of DNA in exons is a known phenomenon. It was suggested that one of the initial causes of periodicity could be the universal (RNY) n pattern (R = A or G, Y = C or U, N = any base) of ancient RNA. Two major questions were addressed in this paper. Firstly, the cause of DNA periodicity, which was investigated by comparisons between real and simulated coding sequences. Secondly, quantification of DNA periodicity was made using an evolutionary algorithm, which was not previously used for such purposes.  相似文献   

9.
A novel synthesis of the enone 12 starting from (+)-dihydrocarvone (3) and its transformation into (+)-7-hydroxycostal (1) are described. The ketone 10, obtained from 4 through a four-step sequence was converted to 12 by acid-catalyzed elimination and subsequent regioselective hydrogenation. Alternatively, the methoxyhydroperoxide 13 generated by the ozonolysis of 4 was subjected to the Criegee rearrangement, providing a mixture of 10 and 14, which on acid treatment, gave 11. Transformation of 12 into 19 was accomplished via a five-step reaction sequence. The reaction of 19 with the lithium alkoxide of 2-lithio-2-propenol afforded (+)-7-hydroxycostol (2), whose oxidation with manganese dioxide gave rise to (+)-7-hydroxycostal (1).  相似文献   

10.
A benzo[f]imidazo[1,5b]-isoquinoline derivative 4 with a 1,2-butandiol linker was prepared by reaction of a trimethylsilylated 5-naphthylidenehydantoin 3 with a 2,3-dideoxy-D-glycero-pentafuranoside 2 in 22% yield. After deprotection, the resulting compound 5 was converted to a DMT protected phosphoramidite building block 7 for standard DNA synthesis. DNA/DNA, DNA/RNA duplexes with 5 inserted as bulges were destabilized, except when the new amidite was used for the synthesis of a zipping duplex.  相似文献   

11.
Abstract

The target compounds were synthesized via the key intermediate carbohydrate 8, which was synthesized by first selectively protecting the 1′ - and 2′- hydroxyl groups followed by selective tosylation of the 5′ -hydroxyl group to obtain compound 3. The tosyl moiety was then replaced by a benzyl ether to obtain 4. Compound 4 underwent Dess-Martin oxidation to afford the ketone 5. Compound 5 was subjected to Wittig olefination to afford the alkene 6 followed by regioselective hydroboration to obtain 7. Compound 7 was fully acetylated using acetic acid, acetic anhydride and sulfuric acid to obtain the key intermediate 8.  相似文献   

12.
Aminoalditol 1-amino-1-deoxy-d-sorbitol (1) was readily converted into 2,3,4,5-tetra-O-methyl derivative 5, a key precursor of a sugar-based [n]-polyurethane. For the polymerization, the free amino or primary hydroxyl groups of 5 were selectively activated and employed as starting monomers in two alternative procedures. Thus, the amino function of 5 was converted into the isocyanate derivative by treatment with di-tert-butyltricarbonate, and polymerized in situ in the presence of Zr(IV) acetylacetonate. The resulting poly(1-amino-1-deoxy-2,3,4,5-tetra-O-methyl-d-sorbitol)urethane (8) had a moderate molecular weight and showed the presence of urea units. The alternative synthesis of 8 involved the activation of the free hydroxyl group of 5 as the corresponding phenylcarbonate. The polymerization of this α-amino-ω-phenylcarbonate alditol monomer does not require a metal catalyst. The resulting material exhibited an improved molecular weight and higher purity than that obtained via the isocyanate. [n]-polyurethane 8 was highly soluble in water as well as in common organic solvents (chloroform, acetone, ethyl acetate, etc) and was obtained as an amorphous material which was characterized thermally and spectroscopically.  相似文献   

13.
Abstract

A general procedure to obtain tetra-substituted uric acid by stepwise N-alkylation is described. 2,6-Dichloropurine (1) was condensed with 1-propanol by Mitsunobu reaction to give 9-propyl congener (2). Treatment of 2 with ammonia gave adenine derivative (4a), which was converted to the 8-oxoadenine (5b) in 3 steps. Methylation of 5b proceeded site-specifically to give 6-amino-2-chloro-7,8-dihydro-7-methyl-9-propylpurin-8-one (6) as a sole product. Compound 6 was successively treated with NaNO2 and iodomethane to give 2-chloro-1,6,7,8-tetrahydro-1,7-dimethyl-9-propylpurin-6,8-dione (9) accompanied by the O 6-methyl product (8) in 75% and 6.9%, respectively. After nucleophilic substitution of 9 with NaOAc, the product (11) was reacted with iodomethane to give the uric acid (12) and the 2-methoxy product (13) in 46% and 15.5%, respectively. However, the reaction of 11 with the benzylating agents gave only O-benzyl products (14a,b).  相似文献   

14.
An attempt was made to use a simple procedure to obtain (R)- and (S)-2-aminobutanoic acids [(R)- and (S)-1] which are non-proteinogenic α-amino acids and are useful as chiral reagents in asymmetric syntheses. Compound (RS)-1 p-toluenesulfonate [(RS)-2], which is known to exist as a conglomerate, was optically resolved by replacing crystallization with (R)- and (S)-methionine p-toluenesulfonate [(R)- and (S)-3] as optically active co-solutes. When (S)-3 was employed as the co-solute, (R)-2 was preferentially crystallized from a supersaturated solution of (RS)-2 in 1-propanol, as was (S)-2 in the presence of (R)-3. (R)- and (S)-2 recrystallized from 1-propanol were treated with triethylamine in methanol to give (R)- and (S)-1 in optically pure forms.  相似文献   

15.
Abstract

In an effort to develop safe and potent anti-inflammatory agents, a series of novel 4′-fluoro-2′-hydroxychalcones 5ad and their dihydropyrazole derivatives 6ad was prepared. It was synthesized via aldol condensation of 4′-fluoro-2′-hydroxyacetophenone with appropriately substituted aldehydes followed by cyclization with hydrazine hydrate. All the synthesized compounds were evaluated for their antioxidant, anti-inflammatory, cyclooxygenase inhibition selectivity and analgesic activities. The dimethoxychalcone 5a and its dihydropyrazole derivative 6a showed the highest antioxidant activity, while the monomethoxychalcone 5d and its dihydropyrazole derivative 6d showed the highest analgesic and anti-inflammatory activities. It was also found that there is a close correlation between 4′-fluoro-2′-hydroxychalcones 5ad and their dihydropyrazole derivatives 6ad in the screened biological activities. To explain the correlation between the synthesized chalcones and their dihydropyrazole derivatives, especially for the anti-inflammatory activity, docking studies were performed.  相似文献   

16.
Abstract

The 6′-carboxylic acid derivative of neplanocin A 3 was synthesized from NPA, and was converted to the corresponding methyl ester 4 and amides 5 and 6. These were evaluated for their anti-RNA-virus activities. Of the derivatives synthesized, only 5 was active against RNA viruses within the concentration range of 0.14-4.88 μg/mL. Compounds 3 and 5 showed a potent inhibitory effect on S-adenosylhomocysteine (AdoHcy) hydrolase from rabbit erythrocytes. Although a close correlation between the inhibitory effect of adenosine analogues on AdoHcy hydrolase and their antiviral potency has been demonstrated, 3 did not show any anti-RNA-virus activities.

  相似文献   

17.
Damage caused to rice production by coleopteran insects like rice weevil (Sitophilus oryzae), a stored grain insect pest and rice hispa (Dicladispa armigera), a pest of the growing plant is quite high. In order to combat the damage, generation of insect resistant transgenic rice plant was considered desirable. CryIIIA endotoxin ofBacillus thuringiensis var.tenebrionis, a 65 kDa protein toxic to coleopteran insects, figured as the candidate gene product. Thus, the cryIIIA gene was isolated from a local isolate ofBacillus thuringiensis var.tenebrionis. The gene was tailored at the N-terminal end to its minimal size by using a synthetic ATG codon which replaced the first codon next to ATG of threonine to proline. This modification did not affect the functional property of the gene product. A chimeric construct of the modifiedcryIIIA gene was developed containing CaMV35S promoter andnos terminator for plant expression. The expressibility of thecryIIIA gene inindica rice was judged through test for transient expression in indica rice protoplasts.  相似文献   

18.
Abstract

In order to approach the detailed structure-function relationships of aromatase, we studied the inhibitory and inactivatory potencies of several steroidal androstenedione analogues (1: 4-hydroxyandrostenedione, 2: 4-acetoxyandrostenedione and 3: 7α-(4'-amino)phenylthio-4-androstene-3, 17-dione) and non-steroidal imidazole derivatives (4: ketoconazole, 5: miconazole and 6: fadrozole) on equine aromatase in placental microsomes, a well established mammalian model. Human placental microsomes and the purified enzyme from equine testis were also used to compare inhibition by 1 and 2. In equine microsomes, all compounds tested exhibited a competitive inhibition, with Ki values of 4.1, 26 and 1.8 nM for 1, 2 and 3, and of 2400, 1.4 and 4 nM for 4, 5, and 6, respectively. The Km for androstenedione, the substrate mainly used in these studies, was 1.8 ± 0.13 nM. The three non-steroidal derivatives did not inactivate equine aromatase, but 1 and 2 acted as comparable inactivators to a much higher degree than 3. Compound 1 inhibited in a similar manner (89–94%) purified or equine and human microsomal aromatases, whereas 2 inhibited microsomal aromatase more efficiently in the horse than in man (92% and 33% inhibition, respectively). There was only a 40% inhibition with 2 on the purified equine enzyme, which is no more in the natural membrane environment. The comparisons between equine and human microsomal aromatases allow precise functional and structural differences to be observed with these enzymes.  相似文献   

19.
A novel linker containing biotin, alkyne and benzophenone groups (1) was synthesized to identify target proteins using a small molecule probe. This small molecule probe contains an azide group (azide probe) that reacts with an alkyne in 1 via an azide–alkyne Huisgen cycloaddition. Cross-linking of benzophenone to the target protein formed a covalently bound complex consisting of the azide probe and the target protein via 1. The biotin was utilized via biotin–avidin binding to identify the cross-linked complex. To evaluate the effectiveness of 1, it was applied in a model system using an allene oxide synthase (AOS) from the model moss Physcomitrella patens (PpAOS1) and an AOS inhibitor that contained azide group (3). The cross-linked complex consisting of PpAOS1, 1 and 3 was resolved via SDS–PAGE and visualized using a chemiluminescent system. The method that was developed in this study enables the effective identification of target proteins.  相似文献   

20.
Enantiospecific microbial reduction of bicyclic ketones was described. Racemic Wieland–Miescher (1) and Hajos–Parrish (2) ketones were used as substrates. In a 4-h biotransformation of Hajos–Parrish ketone (2) using the strain of Didymosphaeria igniaria an optically pure ketone (R)-2 was obtained, whereas the (S)-2 ketone underwent reduction to (4aS,5S)-4 alcohol with 100% of enantiomeric excess and with over 60% of diastereoisomeric excess. Jones oxidation of the alcohol obtained in the biotransformation gave an optically pure ketone (S)-2. Enzymatic system of Coryneum betulinum reduced the (R)-2 ketone to (4aR,5S)-4 alcohol with a high enantiomerical purity in a 6-day reaction. Wieland-Miescher (1) ketone was transformed by these microorganisms in an analogous way, but the reaction times were longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号