首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Misfolded proteins have enhanced formation of toxic oligomers and nonfunctional protein copies lead to recruiting wild-type protein types. Heat shock protein 90 (HSP90) is a molecular chaperone generated by cells that are involved in many cellular functions through regulation of folding and/or localization of large multi-protein complexes as well as client proteins. HSP90 can regulate a number of different cellular processes including cell proliferation, motility, angiogenesis, signal transduction, and adaptation to stress. HSP90 makes the mutated oncoproteins able to avoid misfolding and degradation and permits the malignant transformation. As a result, HSP90 is an important factor in several signaling pathways associated with tumorigenicity, therapy resistance, and inhibiting apoptosis. Clinically, the upregulation of HSP90 expression in hepatocellular carcinoma (HCC) is linked with advanced stages and inappropriate survival in cases suffering from this kind of cancer. The present review comprehensively assesses HSP90 functions and its possible usefulness as a potential diagnostic biomarker and therapeutic option for HCC.  相似文献   

2.
Role and regulation of the ER chaperone BiP   总被引:16,自引:0,他引:16  
BiP, an HSP70 molecular chaperone located in the lumen of the endoplasmic reticulum (ER), binds newly-synthesized proteins as they are translocated into the ER and maintains them in a state competent for subsequent folding and oligomerization. BiP is also an essential component of the translocation machinery, as well as playing a role in retrograde transport across the ER membrane of aberrant proteins destined for degradation by the proteasome. BiP is an abundant protein under all growth conditions, but its synthesis is markedly induced under conditions that lead to the accumulation of unfolded polypeptides in the ER. This attribute provides a marker for disease states that result from misfolding of secretory and transmembrane proteins.  相似文献   

3.
HSP70 family members are highly conserved proteins that function as molecular chaperones. Their principle role is to aid protein folding and promote the correct cellular localisations of their respective substrates. The function of HSP70 isoforms can be exhibited independently or with the HSP90 chaperone system in which HSP70 is important for substrate recruitment. In addition to their chaperone role, HSP70 isoforms promote cell survival by inhibiting apoptosis at multiple points within both the intrinsic and extrinsic cell death pathways. Consistent with this cytoprotective function, increased expression of HSP70 isoforms is commonly associated with the malignant phenotype. We recently reported that dual silencing of the major constitutive (HSC70) and inducible (HSP72) isoforms of HSP70 in cancer cells could phenocopy the effects of a pharmacologic HSP90 inhibitor to induce proteasome-dependent degradation of HSP90 client proteins CRAF, CDK4 and ERBB2. This was accompanied by a G1 cell cycle arrest and extensive apoptosis which was not seen in non-tumorigenic human cell lines. Here we discuss the possible implications of our research for the development of HSP70 family modulators which offer not only the possibility of inhibiting HSP70 activity but also the simultaneous inhibition of HSP90, resulting in extensive tumour-specific apoptosis.  相似文献   

4.
热激蛋白70研究进展   总被引:6,自引:0,他引:6  
杨秉芬  孙启鸿  曹诚 《生物技术通讯》2009,20(5):716-718,748
热激蛋白70(HSP70)是广泛存在且高度保守的蛋白,作为伴侣分子能够促进蛋白折叠;HSP70可以通过阻止细胞色素c从线粒体释放,与凋亡诱导因子结合使其不能入核,或者抑制JNK激酶活性调节细胞凋亡;HSP70可以调节细胞周期进程,促进细胞生长,阻止细胞衰老;免疫功能研究表明HSP70是有效的免疫佐剂,可激发抗原特异性的CTL反应,同时细胞外HSP70和膜结合HSP70可激发非特异性免疫反应。  相似文献   

5.
The HSF1-mediated stress response pathway is steadily gaining momentum as a critical source of targets for cancer therapy. Key mediators of this pathway include molecular chaperones such as heat shock protein (HSP) 90. There has been considerable progress in targeting HSP90 and the preclinical efficacy and signs of early clinical activity of HSP90 inhibitors have provided proof-of-concept for targeting this group of proteins. The HSP70 family of molecular chaperones are also key mediators of the HSF-1-stress response pathway and have multiple additional roles in protein folding, trafficking and degradation, as well as regulating apoptosis. Genetic and biochemical studies have supported the discovery of HSP70 inhibitors which have the potential for use as single agents or in combination to enhance the effects of classical chemotherapeutic or molecularly targeted agents including HSP90 inhibitors. Here we provide a perspective on the progress made so far in designing agents which target the HSP70 family.  相似文献   

6.
Protein conformational disorders are characterized by disruption of protein folding and toxic accumulation of protein aggregates. Here we describe a sensitive and simple method to follow and monitor general protein aggregation in human cells. Heat shock protein 27 (HSP27) is an oligomeric small heat shock protein that binds and keeps unfolded proteins in a folding competent state. This high specificity of HSP27 for aggregated proteins can be explored to monitor aggregation in living cells by fusing it to a fluorescent protein as Green Fluorescent Protein (GFP). We have constructed a HeLa stable cell line expressing a HSP27:GFP chimeric reporter protein and after validation, this stable cell line is exposed to different agents that interfere with proteostasis, namely Arsenite, MG132, and Aβ‐peptide. Exposure to proteome destabilizers lead to re‐localization of HSP27:GFP fluorescence to foci, confirming that our reporter system is functional and can be used to detect and follow protein aggregation in living cells. This reporter is a valuable tool to setup wide‐genetic screens to identify genes and pathways involved in protein misfolding and aggregation.  相似文献   

7.
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.  相似文献   

8.
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.  相似文献   

9.
Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological function. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, the mechanism by which Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70-mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions in the open conformation of Hsp70 tend to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to a higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings add new, to our knowledge, insights into the general molecular mechanisms of chaperone-mediated protein folding.  相似文献   

10.
Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein's structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.  相似文献   

11.
葡萄糖调节蛋白94又叫做内质网蛋白99,是一种内质网分子伴侣蛋白,与HSP90有50%的同源性。GRP94蛋白可以和Ca2+结合具有蛋白伴侣特性,能协助新合成的多肽转位、折叠、寡聚体的组装、降解,抑制错误折叠蛋白的分泌;GRP94还具有抗原呈递的作用,可以作为肿瘤细胞的伴侣蛋白,参与肿瘤细胞的新陈代谢,保护肿瘤细胞免受有害因素的侵害。GRP94可能与人类多种肿瘤的发生有关,其表达的增高可能是肿瘤发生发展的一个重要因素。GRP94在肿瘤组织中高表达提示相关研究者,应用基因手段抑制GRP94的表达可能能够抑制肿瘤细胞的生长、侵袭和转移、增加肿瘤细胞对化疗药物的敏感性等,并且利用GRP94作为一种新的肿瘤治疗的靶分子或介质可能为肿瘤的基因治疗带来更广泛的应用前景。  相似文献   

12.
Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease – the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.KEY WORDS: Chaperone, Cystic fibrosis, Long QT syndrome, Degradation, Intracellular trafficking, Protein folding  相似文献   

13.
In this work, the relationship between stability and propensity to misfold was probed for a series of purified variants of the polytopic integral membrane protein diacylglycerol kinase. It was observed that there was a strong correlation between stability and folding efficiency. The most common mutations that promoted misfolding were those which also destabilized the protein. These results imply that by targeting unstable membrane proteins for degradation, cellular protein folding quality control can eliminate proteins that have a high intrinsic propensity to misfold into aberrant structures. Moreover, the more rare class of amino acid mutations that promote misfolding without perturbing stability may be particularly dangerous because the mutant proteins may evade the surveillance of cellular quality control systems.  相似文献   

14.
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in China. The lower survival rate of ESCC is attributed to late diagnosis and poor therapeutic efficacy; therefore, the identification of tumor-associated proteins as biomarkers for early diagnosis, and the discovery of novel targets for therapeutic intervention, seems very important for increasing the survival rate of ESCC. To identify tumor-associated proteins as biomarkers in ESCC, we have analyzed ESCC tissues and adjacent normal tissues by two-dimensional electrophoresis (2DE) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The results showed that a total of 104 protein spots with different expression levels were found on 2DE, and 47 proteins were eventually identified by MALDI-TOF MS. Among these identified proteins, 33 proteins including keratin 17 (KRT17), biliverdin reductase B (BLVRB), proteasome activator subunit 1 (PSME1), manganese superoxide dismutase (MnSOD), high-mobility group box-1(HMGB1), heat shock protein 70 (HSP70), peroxiredoxin (PRDX1), keratin 13 (KRT13), and so on were overexpressed, and 14 proteins including cystatin B (CSTB), tropomyosin 2 (TPM2), annexin 1 (ANX1), transgelin (TAGLN), keratin 19 (KRT19), stratifin (SFN), and so on were down-expressed in ESCC. Biological functions of these proteins are associated with cell proliferation, cell motility, protein folding, oxidative stress, and signal transduction. In the subsequent study using immunoassay on ESCC serum samples and tissue-array slides, two representative proteins, HSP70 and HMGB1, were selected as examples for the purpose of validation. The results showed that both HSP70 and HMGB1 can induce autoantibody response in ESCC sera and have higher expression in ESCC tissues. Especially, the frequency of antibodies to HSP70 in ESCC sera was significantly higher than that in normal human sera. The preliminary results suggest that some of these identified proteins might contribute to esophageal cell differentiation and carcinogenesis, certain proteins could be used as tumor-associated antigen (TAA) biomarkers in cancer diagnosis, and further studies on these identified proteins should provide more evidence of how these proteins are involved in carcinogenesis of ESCC.  相似文献   

15.
Members of the human heat shock (HSP) family of related proteins are involved in the intracellular folding, transport, and assembly of proteins and protein complexes. We have observed that human heat shock protein 70 (HSP70) is associated with the capsid precursor P1 of poliovirus and coxsackievirus B1 in infected HeLa cells. Antiserum generated against HSP70 coimmunoprecipitated the poliovirus protein P1, an intermediate in capsid assembly. Similarly, alpha-virion serum coimmunoprecipitated HSP70 from virus-infected cell extracts, but not from mock-infected cell extracts. The HSP70-P1 complex was stable in high-salt medium but was sensitive to incubation with 2 mM ATP, which is a characteristic of other known functional complexes between HSP70 and cellular proteins. The P1 in the complex was predominantly newly synthesized, and the half-life of complexed P1 was nearly twice as long as that of total P1. The HSP70-P1 complex was found to sediment at 3S to 6S, suggesting that it may be part of, or a precursor to, the "5S promoter particles" thought to be an assembly intermediate of picornaviruses. The finding that HSP70 was associated with the capsid precursors of at least two enteroviruses may suggest a functional role of these complexes in the viral life cycles.  相似文献   

16.
Foguel D  Silva JL 《Biochemistry》2004,43(36):11361-11370
Hydrostatic pressure is a robust tool for studying the thermodynamics of protein folding and protein interactions, as well as the dynamics and structure of folding intermediates. One of the main innovations obtained from using high pressure is the stabilization of folding intermediates such as molten-globule conformations, thus providing a unique opportunity for characterizing their structure and dynamics. Equally important is the prospect of understanding protein misfolding diseases by using pressure to populate partially folded intermediates at the junction between productive and off-pathway folding, which may give rise to misfolded proteins, aggregates, and amyloids. High hydrostatic pressure (HHP) has also been used to dissociate nonamyloid aggregates and inclusion bodies. In many proteins, the competition between correct folding and misfolding can lead to formation of insoluble aggregates, an important problem for the biotechnology industry and for human pathologies such as amyloidosis, Alzheimer's, Parkinson's, prion's, and tumor diseases. The diversity of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotechnology companies. The use of high-pressure promises to contribute to the identification of the mechanisms behind these defects and creation of therapies against these diseases.  相似文献   

17.
新生肽链折叠过程中容易出现错误折叠与聚沉,从而导致折叠病等病理现象. 分子伴侣具有辅助其他蛋白质正确折叠,保护蛋白质分子结构的功能.本文选用人肌肌酸激酶为靶蛋白,研究了肽基脯氨酰顺反异构酶人亲环素18(human cyclophilin 18,hCyp18)对人肌肌酸激酶去折叠的作用,发现hCyp18能够抑制人肌肌酸激酶在热变性与化学变性过程中的失活与构象变化,并抑制人肌肌酸激酶在化学变性过程中的聚沉,因此推断hCyp18具有针对人肌肌酸激酶的分子伴侣功能.本文同时研究了hCyp18与人肌肌酸激酶的结合作用,对hCyp18的作用机制进行了初步探讨.  相似文献   

18.
Cells may sense heat shock via the accumulation of thermally misfolded proteins. To explore this possibility, we determined the effect of protein misfolding on gene expression in the absence of temperature changes. The imino acid analog azetidine-2-carboxylic acid (AZC) is incorporated into protein competitively with proline and causes reduced thermal stability or misfolding. We found that adding AZC to yeast at sublethal concentrations sufficient to arrest proliferation selectively induced expression of heat shock factor-regulated genes to a maximum of 27-fold and that these inductions were dependent on heat shock factor. AZC treatment also selectively repressed expression of the ribosomal protein genes, another heat shock factor-dependent process, to a maximum of 20-fold. AZC treatment thus strongly and selectively activates heat shock factor. AZC treatment causes this activation by misfolding proteins. Induction of HSP42 by AZC treatment required protein synthesis; treatment with ethanol, which can also misfold proteins, activated heat shock factor, but treatment with canavanine, an arginine analog less potent than AZC at misfolding proteins, did not. However, misfolded proteins did not strongly induce the stress response element regulon. We conclude that misfolded proteins are competent to specifically trigger activation of heat shock factor in response to heat shock.  相似文献   

19.
20.
The heat shock protein, HSP70, is over-expressed in many tumours and acts at the crossroads of key intracellular processes in its role as a molecular chaperone. HSP70 associates with a vast array of peptides, some of which are antigenic and can mount adaptive immune responses against the tumour from which they are derived. The pool of peptides associated with HSP70 represents a unique barcode of protein metabolism in tumour cells. With a view to identifying unique protein targets that may be developed as tumour biomarkers, we used purified HSP70 and its associated peptide pool (HSP70–peptide complexes, HSP70-PCs) from different human breast tumour cell lines as targets for phage display biopanning. Our results show that HSP70-PCs from each cell line interact with unique sets of peptides within the phage display library. One of the peptides, termed IST, enriched in the biopanning process, was used in a ‘pull-down’ assay to identify the original protein from which the HSP70-associated peptides may have been derived. The eukaryotic translation initiation factor 3 (eIF-3), a member of the elongation factor EF1α family, and the HSP GRP78, were pulled down by the IST peptide. All of these proteins are known to be up-regulated in cancer cells. Immunohistochemical staining of tumour tissue microarrays showed that the peptide co-localised with HSP70 in breast tumour tissue. The data indicate that the reservoir of peptides associated with HSP70 can act as a unique indicator of cellular protein activity and a novel source of potential tumour biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号