首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HER2 assessment is routinely used to select patients with invasive breast cancer that might benefit from HER2-targeted therapy. The aim of this study was to validate a fully automated in situ hybridization (ISH) procedure that combines the automated Leica HER2 fluorescent ISH system for Bond with supervised automated analysis with the Visia imaging D-Sight digital imaging platform. HER2 assessment was performed on 328 formalin-fixed/paraffin-embedded invasive breast cancer tumors on tissue microarrays (TMA) and 100 (50 selected IHC 2+ and 50 random IHC scores) full-sized slides of resections/biopsies obtained for diagnostic purposes previously. For digital analysis slides were pre-screened at 20x and 100x magnification for all fluorescent signals and supervised-automated scoring was performed on at least two pictures (in total at least 20 nuclei were counted) with the D-Sight HER2 FISH analysis module by two observers independently. Results were compared to data obtained previously with the manual Abbott FISH test. The overall agreement with Abbott FISH data among TMA samples and 50 selected IHC 2+ cases was 98.8% (κ = 0.94) and 93.8% (κ = 0.88), respectively. The results of 50 additionally tested unselected IHC cases were concordant with previously obtained IHC and/or FISH data. The combination of the Leica FISH system with the D-Sight digital imaging platform is a feasible method for HER2 assessment in routine clinical practice for patients with invasive breast cancer.  相似文献   

2.

Introduction

The latest guidelines of the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) to test Human Epidermal Growth Factor Receptor 2 (HER2) in breast cancer after being revised in 2008 underwent a second modification in October 2013. The modification includes changes in cut-offs: 10% strong membranous staining for score 3+ on immunohistochemistry (IHC) (previously 30%) and using the ratio of >2 or absolute gene-copy-number (6 or more) alone or in combination with each other by in-situ-hybridisation technology (previously >2.2 and average copy-number of 6 or more). Hereby we addressed the question, which impact the modified cut-offs had on overall HER2-positivity in a single institution.

Methods

We prospectively analysed 617 consecutive diagnostic breast-cancer cases which underwent double HER2 testing by immunohistochemistry and fluorescent in-situ hybridisation (FISH), using the modified 2013 ASCO/CAP-guidelines for one year (October 2013–October 2014). Results were compared with HER2-test results on 1,528 consecutive diagnostic breast-cancer cases from two previous years (2011–2012), using the 2008 ASCO/CAP guidelines, also tested with IHC and FISH in each case.

Results

Between October 2013 and October 2014, overall HER2-positivity was 15.8% (98 of 617 cases were either IHC 3+ or FISH amplified). 79 of 617 cases (13%) were IHC 3+, 96 of 617 cases (15.5%) were FISH amplified. Equivocal cases were seen in 25 of 617 cases (4.1%). 22 of 25 equivocal cases (88%) in 2013–2014 were IHC 1+ or 2+. In 13 equivocal cases, there was a repeated IHC/FISH testing: 2 of 13 cases (15%) became FISH amplified, 1 of 13 cases (7.5%) became IHC 3+. In 2011–2012, overall HER2-positivity (IHC/FISH) was 13.8% (211 of 1,528 cases). 185 of 1,528 cases (12%) were 3+ on IHC, 181 of 1,522 cases (12%) were amplified by FISH. Six of 1,528 cases were equivocal by FISH, and interpreted as non-amplified (0.3%).

Conclusions

Applying the modified ASCO/CAP guidelines from 2013 resulted in an increase (2%) in overall HER2-positivity rate compared to overall-HER2-positivity rate using the 2008 ASCO/CAP guidelines. The increased positivity rate was mainly due to more FISH-positive cases (3.5% more than until 2013). The high rate of equivocal cases (4.1%) did not contribute to increase in overall HER2-positivity, but resulted in delay in definitive HER2-status.  相似文献   

3.

Background

Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation.

Results and Discussion

Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4’-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1–10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines.

Conclusion

Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.  相似文献   

4.
HER2 fluorescence in situ hybridization (FISH) testing for breast cancer is largely limited to academic centers and commercial laboratories. As testing demands increase, methods for rapid and cost-effective technical validation and quality assessment will be required. Tissue microarray (TMA), a technique for high-throughput biomarker evaluation, could help facilitate these needs. Our objective was to assess the usefulness of TMA technology for validation of HER2 FISH testing. Two TMA blocks containing paired cores from 41 breast cancers were constructed. HER2 FISH was performed in parallel at two institutions and the results compared. One institution, with considerable HER2 FISH experience, served as the reference laboratory. HER2 chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) were compared to the FISH results. For positive and negative results, the concordance rate between laboratories was 100%. Using kappa statistical analysis to determine interobserver agreement, HER2 to chromosome 17 gene copy ratios showed strong agreement between laboratories with kappa = 0.85 (perfect agreement = 1.0). Four cases displaying low-level amplification by CISH contained chromosome 17 polysomy and gene copy ratios of <2.0 by FISH. Good concordance was observed between HER2 IHC and in situ hybridization testing. TMA is a robust and effective method for the technical validation of HER2 FISH testing and should be considered for use by quality assessment programs.  相似文献   

5.
Profiling the amplification and over-expression of the HER2 gene is a key component for defining the prognosis and management of invasive breast carcinoma. Clinical laboratory testing for HER2 gene amplification and over expression has been complicated by an unacceptably high rate of false positive immunohistochemistry (IHC) results, poor reproducibility for the '2+' category of IHC scoring, and reluctant acceptance of alternative testing by fluorescence in situ hybridization (FISH) by the diagnostic pathology community. Novel chromogenic in situ hybridization (CISH) assays have been developed that utilize bright field microscopy and a conventional light microscope for interpretation, but the analytical sensitivity of first generation CISH systems has been problematic. Novel second generation in situ hybridization detection methods based upon polymerized lg detection chemistry, autometallography or enzyme metallography, have been developed that routinely detect endogenous HER2 signals in normal cells (on slide hybridization control) and HER2 signals in both non-amplified and amplified patterns of HER2 genomic signatures. By combining the strength of polymerized peroxidase-labeled antibodies and metallography for gene amplification, with the detection of expression of HER2 encoded protein by IHC on the same slide, both HER2 gene amplification and protein over-expression can be simultaneously evaluated on a cell-by-cell basis in each microscopic field of carcinoma.  相似文献   

6.
The estrogen receptor (ER) pathway and the epidermal growth factor receptor (EGFR) pathway play pivotal roles in breast cancer progression. Targeted therapies able to intercept ER or signaling downstream to EGFR and its kin, HER2, are routinely used to treat distinct groups of breast cancer patients. However, patient responses are limited by resistance to endocrine therapy, which may be due to compensatory HER2/EGFR signaling. This raises the possibility that simultaneous interception of HER2 and ER may enhance therapeutic efficacy. To address the question, we treated breast cancer cells with both fulvestrant (ICI 182780), an ER antagonist with no agonist effects, and lapatinib, an orally available tyrosine kinase inhibitor specific to EGFR and HER2. Our results indicate that the combination of drugs is especially effective when applied to HER2-overexpressing, ER-positive cancer cells. Interestingly, fulvestrant activated the mitogen-activated protein kinase (MAPK) pathway of these cells, but complete inhibition of MAPK signaling was observed on cotreatment with lapatinib. Taken together, our observations reinforce the possibility that the effectiveness of combining anti-ER and anti-HER2/EGFR drugs may be especially effective on a relatively small subtype of HER2-overexpressing, ER-positive tumors of the breast.  相似文献   

7.
ABSTRACT: BACKGROUND: The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2)-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH) or immunohistochemistry (IHC), respectively. Our objective was to combine the US Food and Drug Administration (FDA)-approved HER2 & chromosome 17 centromere (CEN17) brightfield ISH (BISH) and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. METHODS: The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE) samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative)] and Calu-3 [HER2 positive (amplified gene, protein positive)]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5) and a conventional 3,3' -diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigeninlabeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. RESULTS: HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after) the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene-protein assay demonstrated high concordance with those obtained using the separate HER2 IHC and HER2 & CEN17 BISH assays, respectively. CONCLUSIONS: We have developed a protocol that allows simultaneous visualization of the HER2 IHC and HER2 & CEN17 BISH targets. This automated protocol facilitated the determination of HER2 protein and HER2 gene status in randomly selected breast cancer samples, particularly in cases that were equivocal or exhibited tumor heterogeneity. The HER2 gene-protein assay produced results virtually equivalent to those of the single FDA-approved HER2 IHC and HER2 & CEN17 BISH assays. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2041964038705297.  相似文献   

8.
The high incidence of human epidermal growth factor receptor (HER)2 overexpression on breast and various other cancer cells and the prognostic and potentially predictive value of HER2 render this growth receptor a novel and important therapeutic target. Out of a wide range of assays that have been used in research for the detection of HER2 status, only two techniques are now predominant and readily applicable in the routine clinical pathology laboratory: determination of HER2 overexpression by immunohistochemistry (IHC) and HER2 gene amplification by fluorescence in situ hybridisation (FISH). In a retrospective study on a cohort of 173 archival invasive breast carcinomas a chromogenic in situ hybridisation (CISH) assay for the detection of HER2 amplification was established. Results were compared to HercepTest, which is the most frequently used method for detecting HER2 alteration. Additionally, HER2 gene copy number was investigated using differential PCR (dPCR) as a testing system. Discrepant cases between CISH and HercepTest and all IHC positive cases (2+ and 3+), a total of 42 cases, were analysed with FISH Path Vysion (Vysis) assay. HER2 overexpression was found by IHC in 24.3%, HER2 amplification by CISH in 19.1% and by dPCR in 9.2% of the tumours. The overall concordance rate between CISH and IHC was 95.9%, between dPCR and IHC 85% and between CISH and FISH 100%, respectively. Among 25 HercepTest positive cases (score 3+) two showed no gene amplification and four out of 13 tumours with score 2+ were negative with CISH and FISH. The current study showed that CISH offers an ideal approach that allows detection of HER2 amplification in the context of morphology, whereas the major drawback of dPCR is the impracticability of tissue differentiation of invasive and non-invasive carcinoma.  相似文献   

9.
10.

Introduction

HER2 status assessment became a mandatory test assay in breast cancer, giving prognostic and predictive information including eligibility for adjuvant anti-HER2 therapy. Precise and reliable assessment of HER2 status is therefore of utmost importance. In this study we analyzed breast cancer samples by a novel technology for concomitant detection of the HER2 protein and gene copy number.

Methods

Tissue microarrays containing 589 invasive breast cancer samples were analyzed with a double immunohistochemistry (IHC) and silver labeled in situ hybridization (SISH) assay simultaneously detecting HER2 protein and gene copy number in the same tumor cells. This bright-field assay was analyzed using scores according to the modified ASCO guidelines and the results were correlated with patient prognosis.

Results

Overall concordance rate between protein expression and the presence of gene amplification was 98%. Fifty-seven of 60 tumors (95%) with IHC score 3+, 6 of 10 tumors with IHC score 2+ (60%) and only 3 of 519 tumors (0.6%) with IHC score 0/1+ were amplified by SISH. Patients with gene amplification despite IHC score 0/1+ had a tendency for worse overall survival (p = 0.088, reaching nearly statistical significance) compared to IHC score 0/1+ without amplification. In contrast, there was no difference in overall survival in IHC score 3+/2+ tumors with and without gene amplification.

Conclusions

The novel double IHC and SISH assay for HER2 is efficient in the identification of breast cancer with discordant HER2 protein and HER2 gene status, especially for the prognostically relevant groups of HER2 protein negative tumors with HER2 amplification and HER2 protein positive tumors without HER2 amplification. Breast cancer without HER2 amplification among IHC score 2+/3+ tumors (10% in our cohort) suggests that other mechanisms than gene amplification contribute to protein overexpression in these cells.  相似文献   

11.
Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 519 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 519, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC50 ranging from 0.009 to 0.026?µM for EGFR and 0.021 to 0.069?µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC50 0.009 and 0.021?µM for EGFR and HER2, respectively.  相似文献   

12.
13.
14.
The human epidermal growth factor receptor 2 (EGFR2 or HER2) has been established as a therapeutic target for HER2-positive breast cancer. Although a number of small-molecule agents have been developed to target HER2, many adverse drug reactions (ADRs) such as side effects and drug resistance are frequently observed in the chemotherapeutics. Previously, peptides derived from MIG6 protein, a natural negative regulator of EGFR and HER2, have been shown to destabilize EGFR dimerization (Zhang et al. 2007). Here, we grafted a MIG6 fragment (336KSLPSYLNGVMPPTQSFAPDPKYVSS361) in crystal interaction site from EGFR to HER2, truncated the fragment to obtain a short segment (346MPPTQSFA353) with reserved binding capability (K d = 121.6 ± 14.5 μM) to HER2 kinase domain, and optimized the segment to improve its affinity for the domain. Consequently, three peptides (MLPNQSFA, MFPNQSFA and MFPYQSFA) were successfully designed to exhibit moderate or high potency (K d = 78.0 ± 9.8, 28.7 ± 3.9 and 65.1 ± 7.2 μM, respectively) towards HER2 kinase domain, which are expected to destabilize HER2 dimerization and then suppress the kinase activation in breast cancer.  相似文献   

15.

Background

The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses.

Methodology and Principal Findings

Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs'' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.

Conclusions and Significance

These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.  相似文献   

16.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

17.
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.  相似文献   

18.

Background

The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH).

Methodology/Principal Findings

148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs.

Conclusions/Significance

EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.  相似文献   

19.
Cross-talk between the estrogen and the EGFR/HER signalling pathways has been suggested as a potential cause of resistance to endocrine therapy in breast cancer. Here, we determined HER1-4 receptor and neuregulin-1 (NRG1) ligand mRNA expression levels in breast cancers and corresponding normal breast tissue from patients previously characterized for plasma and tissue estrogen levels. In tumours from postmenopausal women harbouring normal HER2 gene copy numbers, we found HER2 and HER4, but HER3 levels in particular, to be elevated (2.48, 1.30 and 22.27 –fold respectively; P<0.01 for each) compared to normal tissue. Interestingly, HER3 as well as HER4 were higher among ER+ as compared to ER- tumours (P=0.004 and P=0.024, respectively). HER2 and HER3 expression levels correlated positively with ER mRNA (ESR1) expression levels (r=0.525, P=0.044; r=0.707, P=0.003, respectively). In contrast, EGFR/HER1 was downregulated in tumour compared to normal tissue (0.13-fold, P<0.001). In addition, EGFR/HER1 correlated negatively to intra-tumour (r=-0.633, P=0.001) as well as normal tissue (r=-0.556, P=0.006) and plasma estradiol levels (r=-0.625, P=0.002), suggesting an inverse regulation between estradiol and EGFR/HER1 levels. In ER+ tumours from postmenopausal women, NRG1 levels correlated positively with EGFR/HER1 (r=0.606, P=0.002) and negatively to ESR1 (r=-0.769, P=0.003) and E2 levels (r=-0.542, P=0.020). Our results indicate influence of estradiol on the expression of multiple components of the HER system in tumours not amplified for HER2, adding further support to the hypothesis that cross-talk between these systems may be of importance to breast cancer growth in vivo.  相似文献   

20.
OBJECTIVE: To assess the rate of HER2/neu overexpression in cytologic specimens by immunocytochemistry (ICC) and compare these results in matched surgical specimens by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), when available. STUDY DESIGN: All cytologic specimens processed for HER2/neu evaluation by ICC (72 cases) and available corresponding histologic specimens (16 cases) were retrieved from our files. ICC was applied to previously Papanicolaou stained, routine fine needle aspirations specimens (64 cases) and cytocentrifuged, alcohol-fixed, fluid specimens (8 cases). FISH was performed on 6 histologic specimens. RESULTS: Overexpression of HER2/neu was seen in 7/22 breast cancers (31.8%), 3/18 pulmonary adenocarcinomas (16.6%), 2/5 colorectal adenocarcinomas (40%), 1/2 adenocarcinomas of the biliary system (50%), 1/3 thyroid papillary carcinomas (33.3%) and 1/3 prostate adenocarcinomas (33.3%). Sixteen cases had IHC in matched histologic specimens: 14 (87.5%) cases were concordant (11 negative and 3 positive in both specimens), 1 case was negative in the cytologic specimen and positive in the histologic specimen (with no amplification by FISH), and 1 case was positive in the cytologic specimen and negative in the histologic specimen (not informative by FISH). CONCLUSION: Our data suggest that overexpression of HER2/neu oncoprotein can be successfully detected in routine cytologic specimens, providing a simple, fast and cost-effective method of selecting patients for specific treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号