首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Peptide fractionation is extremely important in proteomics approaches. Full proteome characterization is desired from complex organisms, and with growing interest in post-translational modifications an extended protein sequence coverage is required. Peptide fractionation techniques have the great challenge of feeding current mass spectrometers in a way in which these issues are met. Peptide fractionation can be divided into three simple components: the column characteristics; the mobile phase; and peptide properties (charge, polarity, hydrophobicity and size). The current challenges are in the combination of these three components to allow comprehensive proteomics studies to be improved.  相似文献   

2.
Haynes PA  Roberts TH 《Proteomics》2007,7(16):2963-2975
In this review we examine the current state of analytical methods used for shotgun proteomics experiments in plants. The rapid advances in this field in recent years are discussed, and contrasted with experiments performed using current widely used procedures. We also examine the use of subcellular fractionation approaches as they apply to plant proteomics, and discuss how appropriate sample preparation can produce a great increase in proteome coverage in subsequent analysis. We conclude that the conjunction of these two techniques represents a significant advance in plant proteomics, and the future of plant biology research will continue to be enriched by the ongoing development of proteomic analytical technology.  相似文献   

3.
Sequence determination of peptides is a crucial step in mass spectrometry–based proteomics. Peptide sequences are determined either by database search or by de novo sequencing using tandem mass spectrometry. Determination of all the theoretical expected peptide fragments and eliminating false discoveries remains a challenge in proteomics. Developing standards for evaluating the performance of mass spectrometers and algorithms used for identification of proteins is important for proteomics studies. The current study is focused on these aspects by using synthetic peptides. A total of 599 peptides were designed from in silico tryptic digest with 1 or 2 missed cleavages from 199 human proteins, and synthetic peptides corresponding to these sequences were obtained. The peptides were mixed together, and analysis was carried out using liquid chromatography–electrospray ionization tandem mass spectrometry on a Q-Exactive HF mass spectrometer. The peptides and proteins were identified with SEQUEST program. The analysis was carried out using the proteomics workflows. A total of 573 peptides representing 196 proteins could be identified, and a spectral library was created for these peptides. Analysis parameters such as “no enzyme selection” gave the maximum number of detected peptides as compared with trypsin in the selection. False discoveries could be identified. This study highlights the limitations of peptide detection and the need for developing powerful algorithms along with tools to evaluate mass spectrometers and algorithms. It also shows the limitations of peptide detection even with high-end mass spectrometers. The mass spectral data are available in ProteomeXchange with accession no. PXD017992.  相似文献   

4.
Here we demonstrate the usefulness of peptide fractionation by SDS-free polyacrylamide gel electrophoresis and its applicability to proteomics studies. In the absence of SDS, the driving force for the electrophoretic migration toward the anode is supplied by negatively charged acidic amino acid residues and other residues as phosphate, sulfate and sialic acid, while the resulting mobility depends on both the charge and the molecular mass of the peptides. A straightforward method was achieved for SDS-PAGE of proteins, enzyme digestion, peptide transfer and fractionation by SDS-free PAGE, which was named dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). This method increases the number of identified proteins 2.5-fold with respect to the proteins identified after direct analysis, and more than 80% of assigned peptides were found in unique SDS-free gel slices. A vast majority of identified peptides (93%) have p I values below 7.0, and 7% have p I values between 7.0 and 7.35. Peptide digests that were derived from complex protein mixtures were in consequence simplified as peptides that are positively charged are not recovered in the present conditions. The analysis of a membrane protein extract from Neisseria meningitidis by this approach allowed the identification of 97 proteins, including low-abundance components.  相似文献   

5.
Protein microarrays represent an emerging technology that promises to facilitate high-throughput proteomics. The major goal of this technology is to employ peptides, full-length proteins, antibodies, and small molecules to simultaneously screen thousands of targets for potential protein–protein interactions or modifications of the proteome. This article describes the performance of a set of peptide aptamers specific for the human papillomavirus (HPV) type 16 oncoproteins E6 and E7 in a microarray format. E6 and E7 peptide aptamer microarrays were probed with fluorescence-labeled lysates generated from HPV-infected cervical keratinocytes expressing both E6 and E7 oncoproteins. Peptide aptamer microarrays are shown to detect low levels of E6 and E7 proteins. Peptide aptamers specific for cellular proteins included on these microarrays suggested that expression of CDK2, CDK4, and BCL-6 may be affected by HPV infection and genome integration. We conclude that peptide aptamer microarrays represent a promising tool for proteomics and may be of value in biological and clinical investigations of cervical carcinogenesis.  相似文献   

6.
The analysis and quantitation of membrane proteins have proved challenging for proteomics. Although several approaches have been introduced to complement gel‐based analysis of intact proteins, the literature is rather limited in comparing major emerging approaches. Peptide fractionation using IEF (OFFGel), strong cation exchange HPLC using a pH gradient (SCX‐pG), and RP HPLC at high pH, have been shown to increase peptide and protein identification over classic MudPIT approaches. This article compares these three approaches for first‐dimensional separation of peptides using a detergent phase (Triton X‐114) enriched membrane fraction from mouse cortical brain tissue. Results indicate that RP at high pH (pH 10) was superior for the identification of more peptides and proteins in comparison to the OFFGel or the SCX‐pG approaches. In addition, gene ontology analysis (GOMiner) revealed that RP at high pH (pH 10) successfully identified an increased number of proteins with “membrane” ontology, further confirming its suitability for membrane protein analysis, in comparison to SCX‐pG and OFFGel techniques.  相似文献   

7.
Advances in plant proteomics   总被引:1,自引:0,他引:1  
Chen S  Harmon AC 《Proteomics》2006,6(20):5504-5516
  相似文献   

8.
Via combined separation approaches, a total of 1399 proteins were identified, representing 47% of the Sulfolobus solfataricus P2 theoretical proteome. This includes 1323 proteins from the soluble fraction, 44 from the insoluble fraction and 32 from the extra-cellular or secreted fraction. We used conventional 2-dimensional gel electrophoresis (2-DE) for the soluble fraction, and shotgun proteomics for all three cell fractions (soluble, insoluble, and secreted). Two gel-based fractionation methods were explored for shotgun proteomics, namely: (i) protein separation utilizing 1-dimensional gel electrophoresis (1-DE) followed by peptide fractionation by iso-electric focusing (IEF), and (ii) protein and peptide fractionation both employing IEF. Results indicate that a 1D-IEF fractionation workflow with three replicate mass spectrometric analyses gave the best overall result for soluble protein identification. A greater than 50% increment in protein identification was achieved with three injections using LC-ESI-MS/MS. Protein and peptide fractionation efficiency; together with the filtration criteria are also discussed.  相似文献   

9.
Peptide sequencing plays a fundamental role in proteomics. Tandem mass spectrometry, being sensitive and efficient, is one of the most commonly used techniques in peptide sequencing. Many computational models and algorithms have been developed for peptide sequencing using tandem mass spectrometry. In this paper, we investigate general issues in de novo sequencing, and present results that can be used to improve current de novo sequencing algorithms. We propose a general preprocessing scheme that performs binning, pseudo-peak introduction, and noise removal, and present theoretical and experimental analyses on each of the components. Then, we study the antisymmetry problem and current assumptions related to it, and propose a more realistic way to handle the antisymmetry problem based on analysis of some datasets. We integrate our findings on preprocessing and the antisymmetry problem with some current models for peptide sequencing. Experimental results show that our findings help to improve accuracies for de novo sequencing.  相似文献   

10.

Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.

  相似文献   

11.
In the past decade, improvements in genome annotation, protein fractionation methods and mass spectrometry instrumentation resulted in rapid growth of Drosophila proteomics. This review presents the current status of proteomics research in the fly. Areas that have seen major advances in recent years include efforts to map and catalog the Drosophila proteome and high-throughput as well as targeted studies to analyze protein–protein interactions and post-translational modifications. Stable isotope labeling of flies and other applications of quantitative proteomics have opened up new possibilities for functional analyses. It is clear that proteomics is becoming an indispensable tool in Drosophila systems biology research that adds a unique dimension to studying gene function.  相似文献   

12.
Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.  相似文献   

13.
Proteome fractionation refers to separation at the level of intact proteins. Proteome fractionation may precede sample digestion and subsequent peptide-level separation and detection (i.e., bottom-up mass spectrometry [MS]). For top-down MS, proteome fractionation acts as a stand-alone separation platform, since intact proteins are directly analyzed by the mass spectrometer. Regardless of the MS identification strategy, separation of intact proteins has clear benefits as a result of decreasing sample complexity. However, this stage of the workflow also creates considerable challenges, which are generally absent from the counterpart peptide separation experiment. For example, maintaining protein solubility is a key concern before, during and after separation. To this end, surfactants such as sodium dodecyl sulfate may be employed during fractionation, so long as they are eliminated prior to MS. In this article, current strategies for proteome fractionation in a MS-compatible format are reviewed, illustrating the challenges and outlooks on this important aspect of proteomics.  相似文献   

14.
Peptide identification via tandem mass spectrometry sequence database searching is a key method in the array of tools available to the proteomics researcher. The ability to rapidly and sensitively acquire tandem mass spectrometry data and perform peptide and protein identifications has become a commonly used proteomics analysis technique because of advances in both instrumentation and software. Although many different tandem mass spectrometry database search tools are currently available from both academic and commercial sources, these algorithms share similar core elements while maintaining distinctive features. This review revisits the mechanism of sequence database searching and discusses how various parameter settings impact the underlying search.  相似文献   

15.
In proteomics, one-dimensional (1D) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is widely used for protein fractionation prior to mass spectrometric analysis to enhance the dynamic range of analysis and to improve the identification of low-abundance proteins. Such protein prefractionation works well for quantitation strategies if the proteins are labeled prior to separation. However, because of the poor reproducibility of cutting gel slices, especially when small amounts of samples are analyzed, its application in label-free and peptide-labeling quantitative proteomics methods has been greatly limited. To overcome this limitation, we developed a new strategy in which a DNA ladder is mixed with the protein sample before PAGE separation. After PAGE separation, the DNA ladder is stained to allow for easy, precise, and reproducible gel cutting. To this end, a novel visible DNA-staining method was developed. This staining method is fast, sensitive, and compatible with mass spectrometry. To evaluate the reproducibility of DNA-ladder-assisted gel cutting for quantitative protein fractionation, we used stable isotope labeling with amino acids in cell culture (SILAC). Our results show that the quantitative error associated with fractionation can be minimized using the DNA-assisted fractionation and multiple replicates of gel cutting. In conclusion, 1D PAGE fractionation in combination with DNA ladders can be used for label-free comparative proteomics without compromising quantitation.  相似文献   

16.
This study is the first proteomics analysis of the muscularis complexus (pipping muscle) in chicken (Gallus gallus) broiler embryos. We used differential detergent fractionation and nano-HPLC-MS/MS analysis to identify 676 proteins from all cellular components. The identified proteins were functionally classified in accordance with their involvement in various cellular activities.  相似文献   

17.
The identification of unknown amino acid sequences of peptides as well as protein identification is of great significance in proteomics. Here, we present a publicly available web application that facilitates a high resolution mapping of measured molecular masses to peptides and proteins, irrespectively of the enzyme/digestion method used. Furthermore, multi-filtering may be applied in terms of measured mass tolerance, molecular mass and isoelectric point range as well as pattern matching to refine the results. This approach serves complementary to the existing solutions for protein identification and gives insights in novel peptides discovery and protein identification at the cases where the identification scores from the other approaches may be below significance threshold. Peptide Finder has been proven useful in proteomics procedures with experimental data from MALDI-TOF. AVAILABILITY: Peptide Finder web-application is available at http://bioserver-1.bioacademy.gr/Bioserver/PeptideFinder/.  相似文献   

18.
Proteomics studies of pathogenic bacteria are an important basis for biomarker discovery and for the development of antimicrobial drugs and vaccines. Especially where vaccines are concerned, it is of great interest to explore which bacterial factors are exposed on the bacterial cell surface and thus can be directly accessed by the immune system. One crucial step in proteomics studies of bacteria is an efficient subfractionation of their cellular compartments. We set out to compare and improve different protocols for the fractionation of proteins from Gram-negative bacteria into outer membrane, cytoplasmic membrane, periplasmic, and cytosolic fractions, with a focus on the outer membrane. Overall, five methods were compared, three methods for the fast isolation of outer membrane proteins and two methods for the fractionation of each cellular compartment, using Escherichia coli BL21 as a model organism. Proteins from the different fractions were prepared for further mass spectrometric analysis by SDS gel electrophoresis and consecutive in-gel tryptic digestion. Most published subfractionation protocols were not explicitly developed for proteomics applications. Thus, we evaluated not only the separation quality of the five methods but also the suitability of the samples for mass spectrometric analysis. We could obtain high quality mass spectrometry data from one-dimensional SDS-PAGE, which greatly reduces experimental time and sample amount compared to two-dimensional electrophoresis methods. We then applied the most specific fractionation technique to different Gram-negative pathogens, showing that it is efficient in separating the subcellular proteomes independent of the species and that it is capable of producing high-quality proteomics data in electrospray ionization mass spectrometry.  相似文献   

19.
Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain approximately 60 soluble luminal proteins and approximately 25 transmembrane proteins. However, recent proteomic studies based upon affinity purification of soluble components or subcellular fractionation to obtain both soluble and membrane components suggest that there may be many more of both classes of protein resident within this organelle than previously appreciated. Discovery of such proteins has important implications for understanding the function and the dynamics of the lysosome but can also lead the way towards the discovery of the genetic basis for human diseases of hitherto unknown etiology. Here, we describe current approaches to lysosomal proteomics and data interpretation and review the new lysosomal proteins that have recently emerged from such studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号