首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing interest in systems biology has resulted in extensive experimental data describing networks of interactions (or associations) between molecules in metabolism, protein-protein interactions and gene regulation. Comparative analysis of these networks is central to understanding biological systems. We report a novel method (PHUNKEE: Pairing subgrapHs Using NetworK Environment Equivalence) by which similar subgraphs in a pair of networks can be identified. Like other methods, PHUNKEE explicitly considers the graphical form of the data and allows for gaps. However, it is novel in that it includes information about the context of the subgraph within the adjacent network. We also explore a new approach to quantifying the statistical significance of matching subgraphs. We report similar subgraphs in metabolic pathways and in protein-protein interaction networks. The most similar metabolic subgraphs were generally found to occur in processes central to all life, such as purine, pyrimidine and amino acid metabolism. The most similar pairs of subgraphs found in the protein-protein interaction networks of Drosophila melanogaster and Saccharomyces cerevisiae also include central processes such as cell division but, interestingly, also include protein sub-networks involved in pre-mRNA processing. The inclusion of network context information in the comparison of protein interaction networks increased the number of similar subgraphs found consisting of proteins involved in the same functional process. This could have implications for the prediction of protein function.  相似文献   

2.
  总被引:9,自引:1,他引:9  
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

3.
The mapping of protein-protein interactions is key to understanding biological processes. Many technologies have been reported to map interactions and these have been systematically applied in yeast. To date, the number of reported yeast protein interactions that have been truly validated by at least one other approach is low. The mapping of human protein interaction networks is even more complicated. Thus, it is unreasonable to try to map the human interactome; instead, interaction mapping in human cell lines should be focused along the lines of diseases or changes that can be associated with specific cells. In this paper, an approach for combining different 'omics' technologies to achieve efficient mapping and validation of protein interactions in human cell lines is presented.  相似文献   

4.
    
Protein function is often interpreted using molecular interaction diagrams, encoding roles a given protein plays in various molecular mechanisms. Information about disease‐related mechanisms can be inferred from disease maps, knowledge repositories containing manually constructed systems biology diagrams. Disease maps hosted on the Molecular Interaction Network VisuAlization (MINERVA) Platform are individually accessible through a REST API interface of each instance, making it challenging to systematically explore their contents. To address this challenge, we introduce the MINERVA Net web service, a repository of open‐access disease maps allowing users to publicly share minimal information about their maps. The MINERVA Net repository provides REST API endpoints of particular disease maps, which then can be individually queried for content. In this article, we describe the concept of MINERVA Net and illustrate its use by comparing proteins and their interactions in three different disease maps.  相似文献   

5.
6.
Functional sites determine the activity and interactions of proteins and as such constitute the targets of most drugs. However, the exponential growth of sequence and structure data far exceeds the ability of experimental techniques to identify their locations and key amino acids. To fill this gap we developed a computational Evolutionary Trace method that ranks the evolutionary importance of amino acids in protein sequences. Studies show that the best-ranked residues form fewer and larger structural clusters than expected by chance and overlap with functional sites, but until now the significance of this overlap has remained qualitative. Here, we use 86 diverse protein structures, including 20 determined by the structural genomics initiative, to show that this overlap is a recurrent and statistically significant feature. An automated ET correctly identifies seven of ten functional sites by the least favorable statistical measure, and nine of ten by the most favorable one. These results quantitatively demonstrate that a large fraction of functional sites in the proteome may be accurately identified from sequence and structure. This should help focus structure-function studies, rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.  相似文献   

7.
Eukaryotes appear to evolve by micro and macro rearrangements. This is observed not only for long-term evolutionary adaptation, but also in short-term experimental evolution of yeast, Saccharomyces cerevisiae. Moreover, based on these and other experiments it has been postulated that repeat elements, retroposons for example, mediate such events. We study an evolutionary model in which genomes with retroposons and a breaking/repair mechanism are subjected to a changing environment. We show that retroposon-mediated rearrangements can be a beneficial mutational operator for short-term adaptations to a new environment. But simply having the ability of rearranging chromosomes does not imply an advantage over genomes in which only single-gene insertions and deletions occur. Instead, a structuring of the genome is needed: genes that need to be amplified (or deleted) in a new environment have to cluster. We show that genomes hosting retroposons, starting with a random order of genes, will in the long run become organized, which enables (fast) rearrangement-based adaptations to the environment. In other words, our model provides a "proof of principle" that genomes can structure themselves in order to increase the beneficial effect of chromosome rearrangements.  相似文献   

8.
SnoaL2 and AclR are homologous enzymes in the biosynthesis of the aromatic polyketides nogalamycin in Streptomyces nogalater and cinerubin in Streptomyces galilaeus, respectively. Evidence obtained from gene transfer experiments suggested that SnoaL2 catalyzes the hydroxylation of the C-1 carbon atom of the polyketide chain. Here we show that AclR is also involved in the production of 1-hydroxylated anthracyclines in vivo. The three-dimensional structure of SnoaL2 has been determined by multi-wavelength anomalous diffraction to 2.5A resolution, and that of AclR to 1.8A resolution using molecular replacement. Both enzymes are dimers in solution and in the crystal. The fold of the enzyme subunits consists of an alpha+beta barrel. The dimer interface is formed by packing of the beta-sheets from the two subunits against each other. In the interior of the alpha+beta barrel a hydrophobic cavity is formed that most likely binds the substrate and harbors the active site. The subunit fold and the architecture of the active site in SnoaL2 and AclR are similar to that of the polyketide cyclases SnoaL and AknH; however, they show completely different quaternary structures. A comparison of the active site pockets of the putative hydroxylases AclR and SnoaL2 with those of bona fide polyketide cyclases reveals distinct differences in amino acids lining the cavity that might be responsible for the switch in chemistry. The moderate degree of sequence similarity and the preservation of the three-dimensional fold of the polypeptide chain suggest that these enzymes are evolutionary related. Members of this enzyme family appear to have evolved from a common protein scaffold by divergent evolution to catalyze reactions chemically as diverse as aldol condensation and hydroxylation.  相似文献   

9.
    
Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. The integrative structure modeling approach characterizes multi-subunit complexes by computational integration of data from fast and accessible experimental techniques. Crosslinking mass spectrometry is one such technique that provides spatial information about the proximity of crosslinked residues. One of the challenges in interpreting crosslinking datasets is designing a scoring function that, given a structure, can quantify how well it fits the data. Most approaches set an upper bound on the distance between Cα atoms of crosslinked residues and calculate a fraction of satisfied crosslinks. However, the distance spanned by the crosslinker greatly depends on the neighborhood of the crosslinked residues. Here, we design a deep learning model for predicting the optimal distance range for a crosslinked residue pair based on the structures of their neighborhoods. We find that our model can predict the distance range with the area under the receiver-operator curve of 0.86 and 0.7 for intra- and inter-protein crosslinks, respectively. Our deep scoring function can be used in a range of structure modeling applications.  相似文献   

10.
  总被引:22,自引:1,他引:22  
Heparan sulfate has an important role in cell entry by foot-and-mouth disease virus (FMDV). We find that subtype O1 FMDV binds this glycosaminoglycan with a high affinity by immobilizing a specific highly abundant motif of sulfated sugars. The binding site is a shallow depression on the virion surface, located at the junction of the three major capsid proteins, VP1, VP2 and VP3. Two pre-formed sulfate-binding sites control receptor specificity. Residue 56 of VP3, an arginine in this virus, is critical to this recognition, forming a key component of both sites. This residue is a histidine in field isolates of the virus, switching to an arginine in adaptation to tissue culture, forming the high affinity heparan sulfate-binding site. We postulate that this site is a conserved feature of FMDVs, such that in the infected animal there is a biological advantage to low affinity, or more selective, interactions with glycosaminoglycan receptors.  相似文献   

11.
12.
Abstract

We summarize several computational techniques to determine relative free energies for condensed-phase systems. The focus is on practical considerations which are capable of making direct contact with experiments. Particular applications include the thermodynamic stability of apo- and holo-myoglobin, insulin dimerization free energy, ligand binding in lysozyme, and ligand diffusion in globular proteins. In addition to provide differential free energies between neighboring states, converged umbrella sampling simulations provide insight into migration barriers and ligand dissociation barriers and analysis of the trajectories yield additional insight into the structural dynamics of fundamental processes. Also, such simulations are useful tools to quantify relative stability changes for situations where experiments are difficult. This is illustrated for NO-bound myoglobin. For the dissociation of benzonitrile from lysozyme it is found that long umbrella sampling simulations are required to approximately converge the free energy profile. Then, however, the resulting differential free energy between the bound and unbound state is in good agreement with estimates from molecular mechanics with generalized Born surface area simulations. Furthermore, comparing the barrier height for ligand escape suggests that ligand dissociation contains a non-equilibrium component.  相似文献   

13.
    
Thioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant TRXs evolved into seven types with diverse subcellular localization and distinct protein target selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows thioredoxin z (TRXz) with a capacity to activate the photosynthetic Calvin–Benson cycle enzyme phosphoribulokinase. The distinct electronegative surface of TRXz thereby extends the repertoire of TRX–target recognitions.  相似文献   

14.
15.
BARD1–BRCA1 complex plays an important role in DNA damage repair, apoptosis, chromatin remodeling, and other important processes required for cell survival. BRCA1 and BARD1 heterodimer possess E3 ligase activity and is involved in genome maintenance, by functioning in surveillance for DNA damage, thereby regulating multiple pathways including tumor suppression. BRCT domains are evolutionary conserved domains present in different proteins such as BRCA1, BARD1, XRCC, and MDC1 regulating damage response and cell-cycle control through protein–protein interactions. Nonetheless, the role of BARD1BRCT in the recruitment of DNA repair mechanism and structural integrity with BRCA1 complex is still implicit. To explicate the role of BARD1BRCT in the DNA repair mechanism, in silico, in vitro, and biophysical approach were applied to characterize BARD1 BRCT wild-type and Arg658Cys and Ile738Val mutants. However, no drastic secondary and tertiary structural changes in the mutant proteins were observed. Thermal and chemical denaturation studies revealed that mutants Arg658Cys and Ile738Val have a decrease in Tm and ?G than the wild type. In silico studies of BARD1 BRCT (568-777) and mutant protein indicate loss in structural compactness on the Ile738Val mutant. Comparative studies of wild-type and mutants will thus be helpful in understanding the basic role of BARD1BRCT in DNA damage repair.  相似文献   

16.
Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination. However, using a novel surface-patch definition, we find that the interface is rarely significantly more conserved than other surface patches when using either alignment type. When an interface is among the most conserved surface patches, it tends to be part of an enzyme active site. The most conserved surface patch overlaps with 39% (+/- 28%) and 36% (+/- 28%) of the actual interface for diverse and close homologs, respectively. Contrary to results obtained from smaller data sets, this work indicates that residue conservation is rarely sufficient for complete and accurate prediction of protein interfaces. Finally, we find that obligate interfaces differ from transient interfaces in that the former have significantly fewer alignment gaps at the interface than the rest of the protein surface, as well as having buried interface residues that are more conserved than partially buried interface residues.  相似文献   

17.
18.
    
Increasing the affinity of diamidines for AT-rich regions of DNA has long been an important goal of medicinal chemists who wanted to improve the antiparasitic and antifungal properties of that class of derivatives. In recent years it was demonstrated that diamidines could interfere with many other biomolecular targets including ion channels as well as enzymes and modulate some RNA–protein, DNA–protein, and protein–protein interactions. It is therefore not surprising that diamidines now emerge as novel potential drug candidates for the treatment of various diseases, i.a. neurodegenerative disorders, acidosis-related pathological conditions, hypertension, thrombosis, type 2 diabetes, myotonic dystrophy, and cancers.A summary of the most striking results obtained to date in those domains is presented is this review.  相似文献   

19.
20.
Testis-specific protein, Y-encoded (TSPY) binds to eukaryotic translation elongation factor 1 alpha (eEF1A) at its SET/NAP domain that is essential for the elongation during protein synthesis implicated with normal spermatogenesis. The eEF1A exists in two forms, eEF1A1 (alpha 1) and eEF1A2 (alpha 2), encoded by separate loci. Despite critical interplay of the TSPY and eEF1A proteins, literature remained silent on the residues playing significant roles during such interactions. We deduced 3D structures of TSPY and eEF1A variants by comparative modeling (Modeller 9.13) and assessed protein–protein interactions employing HADDOCK docking. Pairwise alignment using EMBOSS Needle for eEF1A1 and eEF1A2 proteins revealed high degree (~92%) of homology. Efficient binding of TSPY with eEF1A2 as compared to eEF1A1 was observed, in spite of the occurrence of significant structural similarities between the two variants. We also detected strong interactions of domain III followed by domains II and I of both eEF1A variants with TSPY. In the process, seven interacting residues of TSPY’s NAP domain namely, Asp 175, Glu 176, Asp 179, Tyr 183, Asp 240, Glu 244, and Tyr 246 common to both eEF1A variants were detected. Additionally, six lysine residues observed in eEF1A2 suggest their possible role in TSPY–eEF1A2 complex formation essential for germ cell development and spermatogenesis. Thus, more efficient binding of TSPY with eEF1A2 as compared to that of eEF1A1 established autonomous functioning of these two variants. Studies on mutated protein following similar approach would uncover the causative obstruction, between the interacting partners leading to deeper understanding on the structure–function relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号