首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of cancer has been an extensively researched topic over the past few decades. Although great strides have been made in cancer prevention, diagnosis, and treatment, there is still much to be learned about cancer’s micro-environmental mechanisms that contribute to cancer formation and aggressiveness. Macrophages, lymphocytes which originate from monocytes, are involved in the inflammatory response and often dispersed to areas of infection to fight harmful antigens and mutated cells in tissues. Macrophages have a plethora of roles including tissue development and repair, immune system functions, and inflammation. We discuss various pathways by which macrophages get activated, various approaches that can regulate the function of macrophages, and how these approaches can be helpful in developing new cancer therapies.  相似文献   

2.
Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):303-310
Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.  相似文献   

4.
Tissue-resident macrophages play an important role in defense against pathogens and perform key functions in organ homeostasis, innate and adaptive immunity. Tissue macrophages originate from blood monocytes that infiltrate virtually every organ in the body. Macrophages in different tissues share many characteristics, including their ability to migrate, phagocytose particles, metabolize lipids and present antigens. Morphologically they are quite heterogeneous, and some distinct functions have been reported. The gene expression profile of macrophages is reflective of both their shared and distinct biological functions. Here, we show that macrophages from murine spleen, liver and peritoneum display dramatically different expression profiles. Clusters of genes were found to represent unique biological functions related to adhesion, antigen presentation, phagocytosis, lipid metabolism and signal transduction. Some gene families, such as integrins, are differentially expressed among the macrophages resident in different tissues, suggesting that the tissue of residence influences their biological function.  相似文献   

5.
Macrophages are major reservoirs of human immunodeficiency virus (HIV) in the tissues of infected humans. As monocytes in the peripheral blood do not show high levels of infection, we have investigated the expression of HIV in T-cell-activated, differentiated macrophages. Peripheral blood mononuclear cells were isolated from HIV-seropositive individuals and stimulated with antigens or mitogens, and the nonadherent fraction was removed. Macrophages were cultured alone for 2 weeks, and HIV expression was assessed. Results from p24 antigen capture assays demonstrated that the presence of autologous T cells and concanavalin A or autologous T cells and allogeneic cells for the initial 24 h of culture induced HIV expression in 35 of 47 (74%) HIV-seropositive patients tested. The macrophage monolayers could be immunostained with anti-HIV antibodies to reveal discrete infectious centers, indicating that complete virus replication was occurring in the macrophages and that infection of adjacent cells was mediated by cell-cell contact. Time course studies of the interval of coculture of the adherent and nonadherent cells indicated that 24 h (but not 2 h) was sufficient for induction of HIV in the macrophages. Direct contact between the adherent cells and activated T cells was required as well. Since the presence of autologous T cells also appeared to be necessary, induction of HIV expression in macrophages may be genetically restricted. HIV-seronegative nonadherent cells were able to induce HIV expression in macrophages from HIV-seropositive donors, demonstrating that the virus originated in the monocytes and was reactivated in the context of a classic T-cell-mediated immune reaction. The high percentage of monocytes from HIV-seropositive donors which can be induced to replicate HIV by activated T cells suggests that infection of monocytes may be critical to the pathogenesis of this lentivirus infection.  相似文献   

6.
The eradication of invading microorganisms depends initially on innate immunity mechanisms that preexist in all individuals and act within minutes of infection. Pathogen spread is often countered by an inflammatory response that recruits more effector molecules and cells of the innate immune system from local blood vessels, while inducing clotting farther downstream so that pathogens cannot spread throughout the blood. If a microorganism crosses an epithelial barrier and begins to replicate in the tissues of the host, it is, in some cases, immediately recognized by the mononuclear phagocytes, or macrophages, that reside in tissues. Macrophages mature continuously from circulating monocytes that leave the circulation to migrate into tissues throughout the body. The second major family of phagocytes, the neutrophils or polymorphonuclear leukocytes (PMNs) are short-lived cells that are abundant cells in the blood but are not present in healthy tissues. Both phagocytic cell types play a key role in innate immunity because they can recognize, ingest and destroy many pathogens without the aid of an adaptive immune response. This infiltration of neutrophils and later macrophages to the site of bacterial infection is tightly linked with the need of these immune defense cells to respond to the tissue microenvironment.  相似文献   

7.
The eradication of invading microorganisms depends initially on innate immunity mechanisms that preexist in all individuals and act within minutes of infection. Pathogen spread is often countered by an inflammatory response that recruits more effector molecules and cells of the innate immune system from local blood vessels, while inducing clotting farther downstream so that pathogens cannot spread throughout the blood. If a microorganism crosses an epithelial barrier and begins to replicate in the tissues of the host, it is, in some cases, immediately recognized by the mononuclear phagocytes, or macrophages, that reside in tissues. Macrophages mature continuously from circulating monocytes that leave the circulation to migrate into tissues throughout the body. The second major family of phagocytes, the neutrophils or polymorphonuclear leukocytes (PMNs) are short-lived cells that are abundant cells in the blood but are not present in healthy tissues. Both phagocytic cell types play a key role in innate immunity because they can recognize, ingest and destroy many pathogens without the aid of an adaptive immune response. This infiltration of neutrophils and later macrophages to the site of bacterial infection is tightly linked with the need of these immune defense cells to respond to the tissue microenvironment.  相似文献   

8.
During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer’s thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.  相似文献   

9.
Macrophages, found in circulating blood as well as integrated into several tissues and organs throughout the body, represent an important first line of defense against disease and a necessary component of healthy tissue homeostasis. Additionally, macrophages that arise from the differentiation of monocytes recruited from the blood to inflamed tissues play a central role in regulating local inflammation. Studies of macrophage activation in the last decade or so have revealed that these cells adopt a staggering range of phenotypes that are finely tuned responses to a variety of different stimuli, and that the resulting subsets of activated macrophages play critical roles in both progression and resolution of disease. This review summarizes the current understanding of the contributions of differentially polarized macrophages to various infectious and inflammatory diseases and the ongoing effort to develop novel therapies that target this key aspect of macrophage biology.  相似文献   

10.
After emigration from the bone marrow into the peripheral blood, monocytes enter tissues and differentiate into macrophages. Monocytes/macrophages have many roles in immune regulation, angiogenesis, and tumor metastasis and invasion. In addition, studies have revealed that these cells are essential to tumor progression. Recently, an accumulation of evidence has indicated that macrophages in distinct regions of tumor masses have distinct origins. For instance, classical monocytes appear to be a major source of macrophages in tumor epithelial, perivascular, and hypoxic regions. In contrast, non-classical monocytes are an important source of macrophages in the tumor perivascular region. During the past century, it has been demonstrated that several chemoattractants can regulate the recruitment of monocytes/macrophages to tumor sites. Despite the importance of monocytes/macrophages in tumor progression, there had been, until recently, no efforts to summarize receptor–ligand pairs between tumor-derived chemokines and corresponding receptors in monocytes in different microenvironments. In this review, we present a cohesive view of the distinct expression patterns of chemokine receptors in two different monocyte subsets (classical and non-classical monocytes) and describe their roles in monocyte/macrophage recruitment into distinct tumor microenvironments. This review provides insight into the behavior of monocytes/macrophages in different tumor microenvironments.  相似文献   

11.
Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.  相似文献   

12.
Macrophages in the pathogenesis of atherosclerosis   总被引:2,自引:0,他引:2  
Moore KJ  Tabas I 《Cell》2011,145(3):341-355
In atherosclerosis, the accumulation of apolipoprotein B-lipoproteins in the matrix beneath the endothelial cell layer of blood vessels leads to the recruitment of monocytes, the cells of the immune system that give rise to macrophages and dendritic cells. Macrophages derived from these recruited monocytes participate in a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix. Some lesions subsequently form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This Review discusses the central roles of macrophages in each of these stages of disease pathogenesis.  相似文献   

13.
Inflammatory processes in asthma are characterized by an infiltration of inflammatory cells including mononuclear phagocytes. It has been observed that mononuclear phagocytes, alveolar macrophages and blood monocytes, release higher quantities of reactive oxygen species in asthmatic patients than in healthy subjects. Chemiluminescence assays were developed to measure the superoxide anion and the other reactive oxygen species. The chemiluminescence response was first analysed with a luminometer, which made it possible to study cells in suspension before and after PMA-stimulation. Secondly a video-imaging camera was used in experiments on adherent cells before and after stimulation with PMA and/or specific stimulus IgE/anti-IgE. Both techniques showed that human alveolar macrophages, blood monocytes, PMN and lymphocytes were spontaneously primed in vivo and were more easily stimulated in asthma. Analysis of adherent cells in vitro may provide give information on the physiological condition of adherent cells in vivo.  相似文献   

14.
Following peripheral nerve transection, a series of biochemical changes occurs in axons and Schwann cells both at the site of lesion and distal to it. Macrophages differentiated from monocytes that invade the area in response to transection (elicited macrophages) and, perhaps, also macrophages normally present in the tissue (resident macrophages) play important roles in these changes. In addition, nerve transection produces changes in the cell bodies of axotomized neurons and their surrounding glial cells, located at some distance from the lesion. To determine whether macrophages might play a role in the changes occurring in the superior cervical ganglion (SCG) after axotomy, we examined the presence of macrophages before and after axonal damage. The monoclonal antibodies ED1, ED2, and OX6 were used, each of which recognizes a somewhat different population of macrophages. Ganglia from normal rats contained a population of resident cells that were ED2+ but very few that were ED1+. Within 2 days after the postganglionic nerves were transected, the number of ED1+ cells increased substantially, with little change in immunostaining for ED2. These data, in combination with published studies on other tissues, suggest that ED1 in the SCG is selective for elicited macrophages and ED2 for resident macrophages. OX6 immunostaining was prominent in normal ganglia but also increased significantly after axotomy, suggesting that it reflects both macrophage populations. Systemic administration of 6-hydroxydopamine, a neurotoxin that causes the destruction of sympathetic nerve endings, also produced an increase in ED1 immunostaining. Thus, the change in ED1 immunostaining in the SCG does not require surgery, with the attendant servering of local blood vessels and connective tissue, but rather only the disconnection of sympathetic neurons from their end organs. The time course of the invasion of monocytes after axotomy indicates that this process is not required to trigger the biochemical changes occurring in the ganglion within the first 24 h. On the other hand, the existence of a resident population of macrophages raises the possibility that changes in those cells might be involved. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Macrophages cultured from the peripheral blood of normal individuals, tuberculoid leprosy patients and long-term-treated, bacteriologically negative lepromatous leprosy patients are able to release hydrogen peroxide on stimulation withMycobacterium leprae. Macrophages from lepromatous leprosy patients who are bacteriologically positive produce considerably lower levels of hydrogen peroxide, even though stimulation of these cells withMycobacterium leprae is definitely demonstrable. This differential stimulation of macrophages appears to be largely specific toMycobacterium leprae. There is also a good indication that decreased stimulation of macrophages from positive patients could be due to an after-effect of infection. It is possible that while other factors aid survival ofMycobacterium leprae in the macrophages, hydrogen peroxide may not be as effective in the killing of the bacteria in infected patients as it would be, perhaps, in other infections.  相似文献   

16.
Zhang JY  Zou ZS  Huang A  Zhang Z  Fu JL  Xu XS  Chen LM  Li BS  Wang FS 《PloS one》2011,6(3):e17484

Background

Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB) infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages.

Methodology/Principal Findings

The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT) carriers and 78 immune activated (IA) patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16+ subsets, which were closely associated with serum alanine aminotransferase (ALT) levels and the liver histological activity index (HAI) scores. In addition, the increased CD16+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16 monocytes/macrophages. Furthermore, peripheral blood CD16+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores.

Conclusions

These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.  相似文献   

17.
The origin, content, and fate of azurophil granules of blood monocytes were investigated in several species (rabbit, guinea pig, human) by electron microscopy and cytochemistry. The life cycle of monocytes consists of maturation in bone marrow, transit in blood, and migration into tissues where they function as macrophages. Cells were examined from all three phases. It was found that: azurophil granules originate in the Golgi complex of the developing monocyte of bone marrow and blood, and ultimately fuse with phagosomes during phagocytosis upon arrival of monocytes in the tissues. They contain lysosomal enzymes in all species studied and peroxidase in the guinea pig and human. These enzymes are produced by the same pathway as other secretory products (i.e., they are segregated in the rough ER and packaged into granules in the Golgi complex). The findings demonstrate that the azurophil granules of monocytes are primary lysosomes or storage granules comparable to the azurophils of polymorphonuclear leukocytes and the specific granules of eosinophils. Macrophages from peritoneal exudates (72–96 hr after endotoxin injection) contain large quantities of lysosomal enzymes throughout the secretory apparatus (rough ER and Golgi complex), in digestive vacuoles, and in numerous coated vesicles; however, they lack forming or mature azurophil granules. Hence it appears that the monocyte produces two types of primary lysosomes during different phases of its life cycle—azurophil granules made by developing monocytes in bone marrow or blood, and coated vesicles made by macrophages in tissues and body cavities.  相似文献   

18.
Macrophages are key innate immune effector cells best known for their role as professional phagocytes, which also include neutrophils and dendritic cells. Recent evidence indicates that macrophages are also key players in metabolic homoeostasis. Macrophages can be found in many tissues, where they respond to metabolic cues and produce pro- and/or anti-inflammatory mediators to modulate metabolite programmes. Certain metabolites, such as fatty acids, ceramides and cholesterol crystals, elicit inflammatory responses through pathogen-sensing signalling pathways, implicating a maladaptation of macrophages and the innate immune system to elevated metabolic stress associated with overnutrition in modern societies. The outcome of this maladaptation is a feedforward inflammatory response leading to a state of unresolved inflammation and a collection of metabolic pathologies, including insulin resistance, fatty liver, atherosclerosis and dyslipidaemia. The present review summarizes what is known about the contributions of macrophages to metabolic diseases and the signalling pathways that are involved in metabolic stress-induced macrophage activation. Understanding the role of macrophages in these processes will help us to develop therapies against detrimental effects of the metabolic syndrome.  相似文献   

19.
Macrophages derived from human blood monocytes perform many tasks related to tissue injury and repair. The main effect of macrophages on the extracellular matrix is considered to be destructive in nature, because macrophages secrete metalloproteinases and ingest foreign material as part of the remodeling process that occurs in wound healing and other pathological conditions. However, macrophages also contribute to the extracellular matrix and hence to tissue stabilization both indirectly, by inducing other cells to proliferate and to release matrix components, and directly, by secreting components of the extracellular matrix such as fibronectin and type VIII collagen, as we have recently shown. We now report that monocytes and macrophages express virtually all known collagen and collagen-related mRNAs. Furthermore, macrophages secrete type VI collagen protein abundantly, depending upon their mode of activation, stage of differentiation, and cell density. The primary function of type VI collagen secreted by macrophages appears to be modulation of cell-cell and cell-matrix interactions. We suggest that the production of type VI collagen is a marker for a nondestructive, matrix-conserving macrophage phenotype that could profoundly influence physiological and pathophysiological conditions in vivo.  相似文献   

20.
Toxoplasma gondii (T. gondii) is a parasitic protist that can infect nearly all nucleated cell types and tissues of warm‐blooded vertebrate hosts. T. gondii utilises a unique form of gliding motility to cross cellular barriers, enter tissues, and penetrate host cells, thus enhancing spread within an infected host. However, T. gondii also disseminates by hijacking the migratory abilities of infected leukocytes. Traditionally, this process has been viewed as a route to cross biological barriers such as the blood–brain barrier. Here, we review recent findings that challenge this view by showing that infection of monocytes downregulates the program of transendothelial migration. Instead, infection by T. gondii enhances Rho‐dependent interstitial migration of monocytes and macrophages, which enhances dissemination within tissues. Collectively, the available evidence indicates that T. gondii parasites use multiple means to disseminate within the host, including enhanced motility in tissues and translocation across biological barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号