首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave (MW) irradiation is a relatively new possibility of conditioning and pretreating for wastewater sludge. Following its application in the telecommunications and food-industries, the environmental use of this technique has come into the limelight in recent years, and has become increasingly popular. Various publications have dealt with the examination of the effects of MW irradiation in municipal sludge-handling processes. We focused on the effects of MW irradiation at different power levels on solubilization (sCOD/tCOD), biodegradation and anaerobic digestion of sludge from the food-industry. For evaluating the efficiency of MW pre-treatment, the changes in the soluble fraction of the organic matter, the VS/TS ratio, the biogas yield, the methane content in the biogas, and the rate of batch mesophilic digestion were used as control parameters. Additionally, the energetic efficiency of MW pre-treatment was also examined. The results were compared with those of conventional heat (CH) treatments of the same sludge. The MW treatment proved to increase both the sCOD/tCOD and the VS/TS ratio. Furthermore, the biogas and methane yields increased during the digestion of the MW-pretreated food-industry sludge. A higher MW power level generally enhanced the biogas and methane production. Energetically, the most economic pre-treatment of sludge from dairy and meat processing was at a power level of 1.5 Wg−1 and 2.5 Wg−1 MW respectively; the surplus energy content of the enhanced biogas product could not compensate the extra energy demand of the stronger MW pre-treatments.  相似文献   

2.
Ammonia is one of the most important contaminants impairing the quality of water resources. When this is considered along with the fact that the global demand for nitrogenous fertilizers is in constant rise, the need for recovery as well as removal of nitrogen is well justified. Crystallization of N and P in the form of struvite (MgNH4PO4·6H2O), which is a slow releasing and valuable fertilizer, is one possible technique for this purpose. This study investigated the removal of NH4+ through struvite precipitation from the effluents of one- (R1) and two-phase (R2) anaerobic reactors digesting dairy manure. To force the formation of struvite in the anaerobic reactor effluents, Mg2+ ion was added by using both Mg(OH)2 and MgCl2·6H2O. To prevent the effect of different total phosphorus (TP) concentration in the effluents of R1 and R2, as well as to not limit the formation of struvite, an excess amount of PO43− (0.14 M) was added in the form of Na2HPO4. Different stoichiometric Mg2+:NH4+:PO43− ratios were tested to determine the required Mg2+ concentrations for maximum NH4+ removal by keeping NH4+:PO43− ratio constant for the effluents of reactors R1 and R2. The results revealed that very high NH4+ removal efficiencies (above 95%) were possible by adding Mg2+ ions higher than 0.06 M concentration in the effluents from reactors R1 and R2. It was also observed that the initial pH adjustment to 8.50 using NaOH did not result in any significant increase in the removal of NH4+ and the removal of NH4+ in the reactors treated with MgCl2·6H2O was higher than those treated with Mg(OH)2 for the same Mg2+ concentration.  相似文献   

3.
This work aimed to co-digest various wastes to assess the best combination of all mixing ratio, also at choosing the best ratio between untreated primary sludge (UPS) singly from two sources, (South valley University (SUPS) and Abu tesht wastewater station (AUPS) and raw chicken manure (RCM) and comparing the results in either case. The co-digestions of untreated primary sludge from Abu tesht wastewater treatment stations with different levels of raw chicken manure (0:100, 10:90, 30:70, 50:50, 90:10, and 100:0) to obtain the best mixtures. Also, co-digestion of untreated primary sludge from south valley university with different levels of raw chicken manure at the same ratios, to obtain the best mixtures. Batch digestion tests were applied in 2.5 L digester with a working volume of 2.0 L. The samples in triplicates were separately loaded into the digesters locally fabricated and kept for 20 days as a retention period and diluted with the same amount of water. Mesophilic under 35 °C was adopted for untreated primary sludge as well as mixtures with raw chicken manure based on total solids (TS) and volatile solid (VS) proportions. The average biogas yields from AUPS/RCM mixture obtained ranged from 8570 to 5600 ml, by the following descending order, 10: 90 > 90:10 and so on >100:0, and the average biogas yields from SUPS/RCM obtained ranged from 6330 to 5635 ml, in the order of 90: 10 > 10:90 and so on >100:0. The results showed highest biogas yield from AUPS/RCM and SUPS/RCM mixtures with mixing ratio of 10:90 and 90:10, respectively, however, the lowest biogas production detected in separate digestion of AUPS and SUPS. The results indicated that co-digestion between the sludge and raw chicken manure could increase total biogas production volume, enhance sludge treatment process, and produce eco-friendly sludge because of co-digestion process than separate processing of each feedstock.  相似文献   

4.
The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3 d for hydrogen reactor and 12 d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(L d), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridiumthermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.  相似文献   

5.
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.  相似文献   

6.
This paper investigates near infra-red spectroscopy (NIRS) as an indirect and rapid method to assess the biochemical methane potential (BMP) of meadow grasses. Additionally analytical methods usually associated with forage analysis, namely, the neutral detergent fibre assay (NDF), and the in-vitro organic matter digestibility assay (IVOMD), were also tested on the meadow grass samples and the applicability of the models in predicting the BMP was studied. Based on these, regression models were obtained using the partial least squares (PLS) method. Various data pre-treatments were also applied to improve the models. Compared to the models based on the NDF and IVOMD predictions of BMP, the model based on the NIRS prediction of BMP gave the best results. This model, with data pre-processed by the mean normalisation method, had an R2 value of 0.69, a root mean square error of prediction (RMSEP) of 37.4 and a residual prediction deviation (RPD) of 1.75.  相似文献   

7.
Summary Improved techniques are needed to predict potential methane generation from refuse buried in landfills. The Biochemical Methane Potential (BMP) test was used to measure the methane potential of ten refuse samples excavated from a Berkeley, CA, landfill. The test was conducted in 125-ml serum bottles containing phosphate-buffered medium and inoculated with anaerobically digested sewage sludge. Comparison of the measured BMP to the theoretical BMP calculated from measured cellulose and hemicellulose concentrations indicated that cellulose plus hemicellulose is not well correlated with the measured BMP. The average of the measured to theoretical BMP was 19.1% (range 0–53%, s.d.=16.9%). Measured sulfate concentrations showed that sulfate was an insignificant electron sink in the samples tested. Once methane production from the refuse was complete, 0.072 g of Whatman no. 1 filter paper was added to two of the four serum bottles incubated for each sample. An average of 84.9% (s.d=2.5%) of the added filter paper was recovered as methane, suggesting that some cellulose and hemicellulose present in refuse is recalcitrant or otherwise not bioavailable.  相似文献   

8.
This study aimed to investigate potential methane production through anaerobic digestion of dairy manure and co‐digestion with maize silage. Two different anaerobic reactor configurations (single‐stage continuously stirred tank reactor [CSTR] and hybrid anaerobic digester) were used and biogas production performances for each reactor were compared. The HR was planned to enable phase separation in order to improve process stability and biogas production under higher total solids loadings (≥4%). The systems were tested under six different organic loading rates increased steadily from 1.1 to 5.4 g VS/L.d. The CSTR exhibited lower system stability and biomass conversion efficiency than the HR. The specific biogas production of the hybrid system was between 440 and 320 mL/gVS with 81–65% volatile solids (VS) destruction. The hybrid system provided 116% increase in specific biogas production and VS destruction improved by more than 14%. When MS was co‐digested together with dairy manure, specific biogas production rates increased about 1.2‐fold. Co‐digestion was more beneficial than mono‐material digestion. The hybrid system allowed for generating methane enriched biogas (>75% methane) by enabling phase separation in the reactor. It was observed that acidogenic conditions prevailed in the first two compartments and the following two segments as methanogenic conditions were observed. The pH of the acidogenic part ranged between 4.7 and 5.5 and the methanogenic part was between 6.8 and 7.2.  相似文献   

9.
Chamy R  Ramos C 《Bioresource technology》2011,102(17):7673-7677
The influence of the substrate concentration, the micro and macro nutrients and buffer requirements, the sludge origin (biomass that is acclimatized or not acclimatized to waste) and the inoculum/substrate ratio (ISR) were studied to determine their effects in the methanogenic potential of turkey manure, which is a solid waste. According to the results obtained, the methane production determination does not require the addition of nutrients (additional to the contents in the waste) and a buffer for this type of assay. The methane yield (YCH4) performance is given by the substrate concentration and the sludge origin, therefore it is better to carry out the assay with biomass that is already adapted to the waste. The methanogenic potential of this type of waste is not determined by the amount of sludge and it does not need an external inoculum (external to the waste contents).  相似文献   

10.
The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste – aeroflotation fats and flesh fats from animal carcasses – was studied in order to improve the waste’s anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions.  相似文献   

11.
This study investigated the influence of ammonia on the hydrolysis rates of proteins and lipids in fish residues under mesophilic anaerobic incubation at a neutral pH. The hydrolysis kinetics of the fish residues, which contained primarily proteins and lipids, were examined at initial ammonia concentrations of 0–16 g N l−1. Carbon hydrolysis was suppressed more by ammonium in the acidogenesis phase than in the acidogenesis/methanogenesis period of a single-stage anaerobic digestion. Conversely, hydrolysis of compounds containing nitrogen was similarly suppressed by ammonia during acidogenesis and acidogenesis/methanogenesis phases of a single-stage anaerobic digestion. Parameter uncertainty analysis demonstrated that the proteins fraction in the fish residues was entirely biodegradable. Model fitting demonstrated that two fractions of lipid substrates exist, namely, easy and hard to biodegrade with hydrolysis rates that were affected differently by ammonia content.  相似文献   

12.
Microwave (2450 MHz, 1250 W), ultrasonic (20 kHz, 400 W) and chemo-mechanical (MicroSludge® with 900 mg/L NaOH followed by 83,000 kPa) pretreatments were applied to pulp mill waste sludge to enhance methane production and reduce digester sludge retention time. The effects of four variables (microwave temperature in a range of 50-175 °C) and sonication time (15-90 min), sludge type (primary or secondary) and digester temperature (mesophilic and thermophilic) were investigated. Microwave pretreatment proved to be the most effective, increasing specific methane yields of WAS samples by 90% compared to controls after 21 days of mesophilic digestion. Sonication solubilized the sludge samples better, but resulted in soluble non-biodegradable compounds. Based on the laboratory scale data, MicroSludge® was found the least energy intensive pretreatment followed by sonication for 15 min alternative with net energy profits of 1366 and 386 kWh/tonne of total solids (TS), respectively. Pretreatment benefits were smaller for thermophilic digesters.  相似文献   

13.
In biogas plants, huge volumes of digestate are produced daily and stored in uncovered tanks, which leak methane into the atmosphere and cause negative environmental impacts. To better understand the effect that different operating parameters of anaerobic digestion plants have on digestate residual methane yield, four digestate samples collected from plants with very different operations were analysed in batch reactors. Their methane yields were very heterogeneous and varied between 2.88 and 37.63 NL/kgVS. The methane yield was shown to be highly influenced by the A.D. plant Organic Loading Rate and by feedstock quality; hydraulic retention time had only limited effects.  相似文献   

14.
Agro-residues account for a large proportion of the wastes generated around the world. There is thus a need for a model to simulate the anaerobic digestion processes used in their treatment. We have developed model based on ADM1, to be applied to agro-wastes. We examined and tested the biodegradability of apple, pear, orange, rape, sunflower, pig manure and glycerol wastes to be used as the basis for feeding the model. Moreover, the fractions of particulate COD (Xc) were calculated, and the disintegration constant was obtained from biodegradability profiles, considering disintegration to be the limiting process. The other kinetic and stoichiometric parameters were taken from the ADM1 model.  相似文献   

15.
16.
Cost-effective technologies are needed to reach the international greenhouse gas (GHG) reduction targets in many fields, including waste and biomass treatment. This work reports the effects of CO2 capture from a combustion flue gas and its use in a newly-patented, two-phase anaerobic digestion (TPAD) process, to improve energy recovery and to reduce CO2 emissions. A TPAD process, fed with urban wastewater sludge, was successfully established and maintained for several months at pilot scale. The TPAD process with injection of CO2 exhibits efficient biomass degradation (58% VSS reduction), increased VFA production during the acidogenic phase (leading to VFA concentration of 8.4 g/L) and high biomethane production (0.350 Sm3/kgSSV; 0.363 Sm3/m3react·d). Moreover, CO2 intake in the acid phase has a positive impact on the overall GHG balance associated to biomethane production, and suggests an improved solution for both emission reduction and biomass conversion into biomethane.  相似文献   

17.
A reliable and inexpensive system for measuring gas flow-rates and kinetics which is based on water displacement by gas in a burette is described. It can easily be couple to an acquisition system for data processing. This system allows the gas to be stored without changing the pressure in the gas producing digester and is able to record flow-rates lower than 1 ml · min?1.  相似文献   

18.
Laboratory and pilot-scale experiments were carried out in order to evaluate the influence of thermal pre-treatment time on waste-activated sludge properties and anaerobic biodegradability. Six experimental conditions were analyzed from 0 to 30 min of hydrolysis time. Solubilization of macromolecular compounds, changes in the main sludge properties and anaerobic biodegradability of the sewage sludge were evaluated. A similar carbohydrate solubilization degree was achieved, from 53% to 70% and 59% to 75% for lab- and pilot-scale experiments, respectively. In the case of proteins, the values of solubilization were lower in the pilot-scale experiment than in the laboratory, with 31-45% and 47-70%, respectively. Ammonia and volatile fatty acid did not undergo important changes; however the sludge dewaterability enhanced at increased pre-treatment times. All the pre-treatment conditions had a positive effect with regard to anaerobic biodegradability and by fitting experimental data with a simplified mathematical model, it was concluded that the maximum biogas production rate is more influenced by the pre-treatment time than the total biogas production.  相似文献   

19.
This paper presents results from anaerobic digestion of cow manure and whey mix. A pilot scale anaerobic digester, 128 l in volume, has been developed, to operate under batch and fed-batch conditions. The versatile and unique characteristics of the instrument allowed testing the methane production directly in the farm. The digester performance was evaluated with two calibration tests, the main for a period of 56 days. The study test was divided into three phases, one for each type of feeding operation (batch, fed-batch, batch). The initial phase of digestion resulted in 57 l-CH4/kg-VS, the second phase had a yield of 86.6 l-CH4/kg-VS and the third one had a production of 67 l-CH4/kg-VS. The total methane yield was equal to 211.4 l-CH4/kg-VS. Using the obtained pilot plant results to a real scale diary production cycle, it was possible to evaluate an electricity production equal to 8.86 kwh per 1 t/d. The conducted tests did show that there is a good potential to the use of a cow manure and whey biomass mix for biogas production.  相似文献   

20.
An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号