共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells 总被引:7,自引:0,他引:7
A long-standing paradox in cellular immunology has been the conditional requirement for CD4(+) Th cells in priming of CD8(+) CTL responses. We propose a new dynamic model of CD4(+) Th cells in priming of Th-dependent CD8(+) CTL responses. We demonstrate that OT II CD4(+) T cells activated by OVA-pulsed dendritic cells (DC(OVA)) are Th1 phenotype. They acquire the immune synapse-composed MHC II/OVAII peptide complexes and costimulatory molecules (CD54 and CD80) as well as the bystander MHC class I/OVAI peptide complexes from the DC(OVA) by DC(OVA) stimulation and thus also the potential to act themselves as APCs. These CD4(+) Th-APCs stimulate naive OT I CD8(+) T cell proliferation through signal 1 (MHC I/OVAI/TCR) and signal 2 (e.g., CD54/LFA-1 and CD80/CD28) interactions and IL-2 help. In vivo, they stimulate CD8(+) T cell proliferation and differentiation into CTLs and induce effective OVA-specific antitumor immunity. Taken together, this study demonstrates that CD4(+) Th cells carrying acquired DC Ag-presenting machinery can, by themselves, efficiently stimulate CTL responses. These results have substantial implications for research in antitumor and other aspects of immunity. 相似文献
2.
Zhao F Hoechst B Gamrekelashvili J Ormandy LA Voigtländer T Wedemeyer H Ylaya K Wang XW Hewitt SM Manns MP Korangy F Greten TF 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(12):6055-6062
The role of Th17 cells in cancer patients remains unclear and controversial. In this study, we have analyzed the phenotype of in vitro primed Th17 cells and further characterized their function on the basis of CCR4 and CCR6 expression. We show a novel function for a subset of IL-17-secreting CD4(+) T cells, namely, CCR4(+)CCR6(+)Th17 cells. When cultured together, CCR4(+)CCR6(+)Th17 cells suppressed the lytic function, proliferation, and cytokine secretion of both Ag-specific and CD3/CD28/CD2-stimulated autologous CD8(+) T cells. In contrast, CCR4(-)CCR6(+) CD4(+) T cells, which also secrete IL-17, did not affect the CD8(+) T cells. Suppression of CD8(+) T cells by CCR4(+)CCR6(+)Th17 cells was partially dependent on TGF-β, because neutralization of TGF-β in cocultures reversed their suppressor function. In addition, we also found an increase in the frequency of CCR4(+)CCR6(+), but not CCR4(-)CCR6(+) Th17 cells in peripheral blood of hepatocellular carcinoma patients. Our study not only underlies the importance of analysis of subsets within Th17 cells to understand their function, but also suggests Th17 cells as yet another immune evasion mechanism in hepatocellular carcinoma. This has important implications when studying the mechanisms of carcinogenesis, as well as designing effective immunotherapy protocols for patients with cancer. 相似文献
3.
Taraban VY Martin S Attfield KE Glennie MJ Elliott T Elewaut D Van Calenbergh S Linclau B Al-Shamkhani A 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(7):4615-4620
Activation of invariant NK T (iNKT) cells with the glycolipid alpha-galactosylceramide promotes CD8(+) cytotoxic T cell responses, a property that has been used to enhance the efficacy of antitumor vaccines. Using chimeric mice, we now show that the adjuvant properties of iNKT cells require that CD40 triggering and Ag presentation to CD8(+) T cells occur on the same APCs. We demonstrate that injection of alpha-galactosylceramide triggers CD70 expression on splenic T cell zone dendritic cells and that this is dependent on CD40 signaling. Importantly, we show that blocking the interaction between CD70 and CD27, its costimulatory receptor on T cells, abrogates the ability of iNKT cells to promote a CD8(+) T cell response and abolishes the efficacy of alpha-GalCer as an adjuvant for antitumor vaccines. These results define a key role for CD70 in linking the innate response of iNKT cells to the activation of CD8(+) T cells. 相似文献
4.
Robbins SH Bessou G Cornillon A Zucchini N Rupp B Ruzsics Z Sacher T Tomasello E Vivier E Koszinowski UH Dalod M 《PLoS pathogens》2007,3(8):e123
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity. 相似文献
5.
6.
Byers AM Kemball CC Andrews NP Lukacher AE 《Microbes and infection / Institut Pasteur》2003,5(2):169-177
Recent evidence indicates that CD8(+) T cells express natural killer cell receptors that constrain the range and magnitude of their activities. For virus-specific CD8(+) T cells, upregulation of these receptors serves to control infection, while concurrently minimizing bystander pathology. Dysregulated expression of these receptors, however, may foster the establishment of persistent virus infection. 相似文献
7.
Electroporation enables plasmid vaccines to elicit CD8+ T cell responses in the absence of CD4+ T cells 总被引:5,自引:0,他引:5
Dayball K Millar J Miller M Wan YH Bramson J 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(7):3379-3384
In vivo electroporation dramatically enhances plasmid vaccine efficacy. This enhancement can be attributed to increased plasmid delivery and, possibly, to some undefined adjuvant properties. Previous reports have demonstrated CD8(+) T cell priming by plasmid vaccines is strongly dependent upon CD4(+) T cell help. Indeed, the efficacy of a plasmid vaccine expressing Escherichia coli beta-galactosidase was severely attenuated in MHC class II-deficient (C2D) mice. To determine whether electroporation could compensate for the absence of CD4(+) T cell help, C2D mice were immunized by a single administration of plasmid in combination with electroporation using two conditions which differed only by the duration of the pulse (20 or 50 msec). Both conditions elicited robust cellular and humoral responses in wild-type mice, as measured by IFN-gamma ELISPOT, anti-beta-galactosidase ELISA, and protection from virus challenge. In C2D mice, the cellular response produced by the vaccine combined with the 50-msec pulse, as measured by ELISPOT, was identical to the response in wild-type mice. The 20-msec pulse elicited a milder response that was approximately one-fifth that of the response elicited by the 50-msec pulse. By contrast, the 20-msec conditions provided comparable protection in both wild-type and C2D recipients whereas the protection elicited by the 50-msec conditions in C2D mice was weaker than in wild-type mice. Further investigation is required to understand the discordance between the ELISPOT results and outcome of virus challenge in the C2D mice. Nonetheless, using this technique to prime CD8(+) T cells using plasmid vaccines may prove extremely useful when immunizing hosts with limiting CD4(+) T cell function, such as AIDS patients. 相似文献
8.
α-Galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+) T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+) T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+) T cells, as a consequence of reduced inflammation. 相似文献
9.
The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of ‘combinatorial encoding’ enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring. 相似文献
10.
Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses 总被引:3,自引:0,他引:3
Andreasen SO Christensen JE Marker O Thomsen AR 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(7):3689-3697
The primary aim of this report was to evaluate the immune responses of CD40 ligand-deficient (CD40L-/-) mice infected with two viruses known to differ markedly in their capacity to replicate in the host. Lymphocytic choriomeningitis virus (LCMV) is a natural mouse pathogen that replicates widely and extensively, whereas vesicular stomatitis virus (VSV) spreads poorly. We found that the primary response of CD40L-/- mice toward VSV is significantly impaired; proliferation of both CD4+ and CD8+ cells is reduced 2- to 3-fold, few CD8+ cells acquire an activated phenotype, and little functional activity is induced. Very similar results were obtained in VSV-infected, CD28-deficient mice. In contrast, neither CD40L nor CD28 was required for induction of a primary CD8+ response toward LCMV. Surprisingly, lack of CD4+ T cells had no impact on the primary immune response toward any of the viruses, even though the CD40 ligand dependence demonstrated for VSV would be expected to be associated with CD4 dependence. Upon coinfection of VSV-infected mice with LCMV, the requirement for CD40 ligand (but not CD28) could be partially bypassed, as evidenced by a 3-fold increase in the frequency of VSV-specific CD8+ T cells on day 6 postinfection. Finally, despite the fact that the primary LCMV-specific CD8+ response is virtually unimpaired in CD40L-/- mice, their capacity to maintain CD8+ effector activity and to permanently control the infection is significantly reduced. Thus, our results demonstrate that the importance of CD40/CD40L interaction for activation of CD8+ T cells varies between viruses and over time. 相似文献
11.
CD8 T cells inhibit IgE via dendritic cell IL-12 induction that promotes Th1 T cell counter-regulation. 总被引:7,自引:0,他引:7
Matthew J Thomas Alistair Noble Ela Sawicka Philip W Askenase David M Kemeny 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(1):216-223
Th1 and Th2 cells are counterinhibitory; their balance determines allergic sensitization. We show here that CD8 T cell subsets break these rules as both T cytotoxic (Tc)1 and Tc2 cells promote Th1 over Th2 immunity. Using IL-12(-/-), IFN-gamma(-/-), and OVA(257-264)-specific Valpha2Vbeta5 TCR-transgenic mice, we have identified the key steps involved. OVA-specific IFN-gamma(-/-) CD8 T cells inhibited IgE responses equivalent to wild-type CD8 T cells (up to 98% suppression), indicating that CD8 T cell-derived IFN-gamma was not required. However, OVA-specific CD8 T cells could not inhibit IgE in IFN-gamma(-/-) recipients unless reconstituted with naive, wild-type CD4 T cells, suggesting that CD4 T cell-derived IFN-gamma did play a role. Transfer of either Tc1 or Tc2 Valpha2Vbeta5 TCR-transgenic CD8 T cells inhibited IgE and OVA-specific Th2 cells while promoting OVA-specific Th1 cell responses, suggesting a potential role for a type 1 inducing cytokine such as IL-12. CD8 T cells were shown to induce IL-12 in OVA(257-264)-pulsed dendritic cells (DC) in vitro. Furthermore, CD8 T cells were unable to inhibit IgE responses in IL-12(-/-) recipients without the addition of naive, wild-type DC, thus demonstrating a pivotal role for IL-12 in this mechanism. These data reveal a mechanism of IgE regulation in which CD8 T cells induce DC IL-12 by an IFN-gamma-independent process that subsequently induces Th1 and inhibits Th2 cells. Th1 cell IFN-gamma is the final step that inhibits B cell IgE class switching. This demonstrates a novel regulatory network through which CD8 T cells inhibit allergic sensitization. 相似文献
12.
It is acknowledged that T cell interactions with mature dendritic cells (DC) lead to immunity, whereas interactions with immature DC lead to tolerance induction. Using a transgenic murine system, we have examined how DC expressing self-peptides control naive, self-reactive CD8+ T cell responses in vitro and in vivo. We have shown, for the first time, that immature DC can also stimulate productive activation of naive self-specific CD8+ T cells, which results in extensive proliferation, the expression of a highly activated cell surface phenotype, and differentiation into autoimmune CTL. Conversely, mature DC can induce abortive activation of naive CD8+ T cells, which is characterized by low-level proliferation, the expression of a partially activated cell surface phenotype which does not result in autoimmune CTL. Critically, both CD8+ T cell responses are determined by a combination of signals mediated by the DC, and that altering any one of these signals dramatically shifts the balance between autoimmunity and self-tolerance induction. We hypothesize that DC maintain the steady state of self-tolerance among self-specific CD8+ T cells in an active and dynamic manner, licensing productive immune responses against self-tissues only when required. 相似文献
13.
4-1BB costimulation enhances HSV-1-specific CD8+ T cell responses by the induction of CD11c+CD8+ T cells 总被引:2,自引:0,他引:2
Since 4-1BB plays a predominant role in CD8+ T cell responses, we investigated the effects of 4-1BB triggering on the primary and memory CD8+ T responses to HSV-1 infection. 4-1BB was detected on 10-15% of CD4+ and CD8+ T cells following the infection. 4-1BB-positive T cells were in the proliferative mode and showed the enhanced expression of anti-apoptotic proteins. Agonistic anti-4-1BB treatment exerted preferential expansion of CD8+ T cells and gB/H-2Kb-positive CD8+ T cells, and enhanced cytotoxicity against HSV-1 that was mainly mediated by CD11c+CD8+ T cells. CD11c+CD8+ T cells were re-expanded following re-challenge with HSV-1 at post-infection day 50, indicating that CD11c+CD8+ phenotype was maintained in memory CD8+ T cell pool. Our studies demonstrated that 4-1BB stimulation enhanced both primary and memory anti-HSV-1 CD8+ T cell responses, which was mediated by a massive expansion of antigen-specific CD11c+CD8+ T cells. 相似文献
14.
Varthaman A Clement M Khallou-Laschet J Fornasa G Gaston AT Dussiot M Caligiuri G Cantor H Kaveri S Nicoletti A 《PloS one》2011,6(6):e21628
T cell-dependent autoimmune diseases are characterized by the expansion of T cell clones that recognize immunodominant epitopes on the target antigen. As a consequence, for a given autoimmune disorder, pathogenic T cell clones express T cell receptors with a limited number of variable regions that define antigenic specificity. Qa-1, a MHC class I-like molecule, presents peptides from the variable region of TCRs to Qa-1-restricted CD8+ T cells. The induction of Vß-specific CD8+ T cells has been harnessed in an immunotherapeutic strategy known as the “T cell vaccination” (TCV) that comprises the injection of activated and attenuated CD4+ T cell clones so as to induce protective CD8+ T cells. We hypothesized that Qa-1-restricted CD8+ regulatory T cells could also constitute a physiologic regulatory arm of lymphocyte responses upon expansion of endogenous CD4+ T cells, in the absence of deliberate exogenous T cell vaccination. We immunized mice with two types of antigenic challenges in order to sequentially expand antigen-specific endogenous CD4+ T cells with distinct antigenic specificities but characterized by a common Vß chain in their TCR. The first immunization was performed with a non-self antigen while the second challenge was performed with a myelin-derived peptide known to drive experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that regulatory Vß-specific Qa-1-restricted CD8+ T cells induced during the first endogenous CD4+ T cell responses are able to control the expansion of subsequently mobilized pathogenic autoreactive CD4+ T cells. In conclusion, apart from the immunotherapeutic TCV, Qa-1-restricted specialized CD8+ regulatory T cells can also be induced during endogenous CD4+ T cell responses. At variance with other regulatory T cell subsets, the action of these Qa-1-restricted T cells seems to be restricted to the immediate re-activation of CD4+ T cells. 相似文献
15.
Tvinnereim AR Hamilton SE Harty JT 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(3):1994-2002
Substantial CD8(+) T cell responses are generated after infection of mice with recombinant Listeria monocytogenes strains expressing a model epitope (lymphocytic choriomeningitis virus NP(118-126)) in secreted and nonsecreted forms. L. monocytogenes gains access to the cytosol of infected cells, where secreted Ags can be accessed by the endogenous MHC class I presentation pathway. However, the route of presentation of the nonsecreted Ag in vivo remains undefined. In this study we show that neutrophil-enriched peritoneal exudate cells from L. monocytogenes-infected mice can serve as substrates for in vitro cross-presentation of both nonsecreted and secreted Ag by dendritic cells as well as for in vivo cross-priming of CD8(+) T cells. In addition, specific neutrophil depletion in vivo by low dose treatment with either of two Ly6G-specific mAb substantially decreased the relative CD8(+) T cell response against the nonsecreted, but not the secreted, Ag compared with control Ab-treated mice. Thus, neutrophils not only provide rapid innate defense against infection, but also contribute to shaping the specificity and breadth of the CD8(+) T cell response. In addition, cross-presentation of bacterial Ags from neutrophils may explain how CD8(+) T cell responses are generated against Ags from extracellular bacterial pathogens. 相似文献
16.
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and "licenses" the APCs to prime CD8+ T cell responses. Although other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naive CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production in TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+ T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of CD8+ T cell responses. 相似文献
17.
Yu Q Yue FY Gu XX Schwartz H Kovacs CM Ostrowski MA 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(4):2486-2495
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection. 相似文献
18.
Background
Dendritic cells capture antigens through PRRs and modulate adaptive immune responses. The type of adaptive immune T cell response generated is dependent upon the type of PRR activated by the microbes. Dectin-1 is a C-type lectin receptor present on dendritic cells.Methodology/Principal Findings
Here we show that selective dectin-1 agonist Curdlan can activate human DCs and induce the secretion of large amounts of IL-23, IL-1β, IL-6 and low levels of IL-12p70 as determined by ELISA. The Curdlan-stimulated DCs are efficient at priming naïve CD4 cells to differentiate into Th17 and Th1 cells. Furthermore, these CD4 T cells induce differentiation of B cells to secrete IgG and IgA. In addition, Curdlan-stimulated DCs promote the expansion and differentiation of Granzyme and perforin expressing cytotoxic T lymphocyte that display high cytolytic activity against target tumor cells in vitro.Conclusions/Significance
These data demonstrate that DCs stimulated through Dectin-1 can generate efficient Th, CTL and B cell responses and can therefore be used as effective mucosal and systemic adjuvants in humans. 相似文献19.
Ganusov VV 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(8):5006-5013
Despite the rapid accumulation of quantitative data on the dynamics of CD8(+) T cell responses following acute viral or bacterial infections of mice, the pathways of differentiation of naive CD8(+) T cells into memory during an immune response remain controversial. Currently, three models have been proposed. In the "stem cell-associated differentiation" model, following activation, naive T cells differentiate into stem cell-like memory cells, which then convert into terminally differentiated short-lived effector cells. In the "linear differentiation" model, following activation, naive T cells first differentiate into effectors, and after Ag clearance, effectors convert into memory cells. Finally, in the "progressive differentiation" model, naive T cells differentiate into memory or effector cells depending on the amount of specific stimulation received, with weaker stimulation resulting in formation of memory cells. This study investigates whether the mathematical models formulated from these hypotheses are consistent with the data on the dynamics of the CD8(+) T cell response to lymphocytic choriomeningitis virus during acute infection of mice. Findings indicate that two models, the stem cell-associated differentiation model and the progressive differentiation model, in which differentiation of cells is strongly linked to the number of cell divisions, fail to describe the data at biologically reasonable parameter values. This work suggests additional experimental tests that may allow for further discrimination between different models of CD8(+) T cell differentiation in acute infections. 相似文献
20.
Antibody-independent antiviral function of memory CD4+ T cells in vivo requires regulatory signals from CD8+ effector T cells 总被引:3,自引:0,他引:3
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity. 相似文献