首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.  相似文献   

2.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

3.
The experimental model for studying the convergence of the heterotype olfactory receptors on the single secondary neuron of the olfactory bulb is proposed. The secondary neuron with bilateral connections (with both olfactory epithelia) in the animals with fused olfactory bulb may serve such a model. The intracellular recording from these secondary neurons of the fused frog's bulb have revealed the secondary neurons which were activated by a certain odorant stimulation of only the one olfactory epithelium, the same odorant stimulation of the other epithelium did not activate (or inhibit) the neurons. The data obtained show that the inputs on the secondary neurons are heterotype, i. e. show the heterogeneous convergence of sensory information on the secondary neurons.  相似文献   

4.
The vacuolar proton-pumping ATPase (V-ATPase) is responsible for the acidification of intracellular organelles and for the pH regulation of extracellular compartments. Because of the potential role of the latter process in olfaction, we examined the expression of V-ATPase in mouse olfactory epithelial (OE) cells. We report that V-ATPase is present in this epithelium, where we detected subunits ATP6V1A (the 70-kDa "A" subunit) and ATP6V1E1 (the ubiquitous 31-kDa "E" subunit isoform) in epithelial cells, nerve fiber cells, and Bowman's glands by immunocytochemistry. We also located both isoforms of the 56-kDa B subunit, ATP6V1B1 ("B1," typically expressed in epithelia specialized in regulated transepithelial proton transport) and ATP6V1B2 ("B2") in the OE. B1 localizes to the microvilli of the apical plasma membrane of sustentacular cells and to the lateral membrane in a subset of olfactory sensory cells, which also express carbonic anhydrase type IV, whereas B2 expression is stronger in the subapical domain of sustentacular cells. V-ATPase expression in mouse OE was further confirmed by immunoblotting. These findings suggest that V-ATPase may be involved in proton secretion in the OE and, as such, may be important for the pH homeostasis of the neuroepithelial mucous layer and/or for signal transduction in CO2 detection. proton secretion; vacuolar H+-ATPase; immunofluorescence; pH homeostasis; olfaction  相似文献   

5.
Viral upper respiratory infections are the most common cause of clinical olfactory dysfunction, but the pathogenesis of dysosmia after viral infection is poorly understood. Biopsies of the olfactory mucosa in patients that complain of dysosmia after viral infection fall into two categories: one in which no olfactory epithelium is seen and another in which the epithelium is disordered and populated mainly by immature neurons. We have used intranasal inoculation with an olfactory bulb line variant of MHV to study the consequences of viral infection on peripheral olfactory structures. MHV OBLV has little direct effect on the olfactory epithelium, but causes extensive spongiotic degeneration and destruction of mitral cells and interneurons in the olfactory bulb such that the axonal projection from the bulb via the lateral olfactory tract is markedly reduced. Moreover, surviving mitral cells apparently remain disconnected from the sensory neuron input to the glomerular layer, judging from retrograde labeling studies using Dil. The damage to the bulb indirectly causes a persistent, long-term increase in the turnover of sensory neurons in the epithelium, i.e. the relative proportion of immature to mature sensory neurons and the rate of basal cell proliferation both increase. The changes that develop after inoculation with MHV OBLV closely resemble the disordering of the olfactory epithelium in some patient biopsies. Thus, damage to the olfactory nerve or bulb may contribute to a form of post-viral olfactory dysfunction and MHV OBLV is a useful model for studying the pathogenesis of this form of dysosmia.  相似文献   

6.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

7.
Transregulation of erbB expression in the mouse olfactory bulb.   总被引:2,自引:0,他引:2  
Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.  相似文献   

8.
Despite the relatively simplified organization of the olfactory epithelium (OE), our understanding of the factors that regulate its cellular diversity is limited. Genetic and localization studies suggest that Notch signaling may be important in this process. We characterize here a population of Notch1 + olfactory basal cells in embryonic mice that coordinately express both the Notch effector Hes5 and the glycosyltransferase Lfng. These cells are distinct from Mash1 + neuronal precursors, but give rise to sensory neurons, suggesting that Notch1 signals may in part function to maintain a neurogenic progenitor pool. Furthermore, Lfng + cells also generate a population of cells in the migratory mass that appear to be ensheathing glial precursors, indicating potential multipotency in these progenitors. The Notch ligand Dll4 is expressed by basal OE cells that are interspersed with Notch1 + progenitors during later OE neurogenesis. In contrast, mice deficient in Dll1 exhibit a smaller OE and a loss of Hes5 expression, indicating an earlier function in olfactory progenitor cell development. Taken together, these results further support a role for Notch signaling in the regulation of olfactory neurogenesis and cell diversity.  相似文献   

9.
10.
In this study, we investigated the distribution and developmental expression of the GABAB receptor subunits, GABAB1 and GABAB2, in the main and accessory olfactory bulbs of the rat. Antibodies raised against these subunits strongly labelled the glomerular layer, suggesting that olfactory and vomeronasal nerve fibers express functional GABAB receptors. Using postembedding immunogold cytochemistry, we found that GABAB receptors can be present at both extrasynaptic and presynaptic sites of olfactory nerve terminals, and in the latter case they are preferentially associated with the peripheral part of the synaptic specialization. Olfactory nerve fibers expressed GABAB1 and GABAB2 at early developmental stages, suggesting that GABAB receptors may play a role in olfactory development. Output and local neurons of the main and accessory olfactory bulbs were also labelled for GABAB1 and GABAB2, although the subcellular distribution patterns of the two subunits were not completely overlapping. These results indicate that presynaptically located GABAB receptors modulate neurotransmitter release from olfactory and vomeronasal nerve fibers and that, in addition to this presynaptic role, GABAB receptors may regulate neuronal excitability in infraglomerular circuits.  相似文献   

11.
Sørbø JG  Moe SE  Holen T 《FEBS letters》2007,581(25):4884-4890
Aquaporin-4 (AQP4) has been reported to be upregulated post-partum in pregnancy and in early lung development. Several technical challenges exist in measuring AQP4 protein levels, among them sensitivity to detergent solubilization, sample heating and gel composition. Here we have optimized quantification of AQP4 using immuno-blots. Using improved methodology we find no evidence for AQP4 upregulation post-partum or in the early lung development. However, in the nasal epithelium AQP4 is upregulated as early as in the brain. Furthermore, AQP4 is strongly expressed in the glomerulus, the synaptic unit of the olfactory bulb, suggesting a role for AQP4 in olfactory function.  相似文献   

12.
13.
Voronkov GS  Izotov VA 《Biofizika》2001,46(4):696-703
A computer model of the olfactory bulb was constructed. The paper describes: 1) the general architecture of a model neuron network that reflects the neurophysiological experimental and theoretical data on the structural and functional organization of the peripheral part of the olfactory system, the olfactory bulb with inputs from olfactory receptor neurons; 2) the organization of each of three levels of the model: receptors, olfactory glomeruli, and basic neurons; and 3) a scenario of the computer model work. In some aspects, in particular, in the principle of information presentation, the treatment of the role of basic neurons (mitral and tufted cells), and their interrelations in modules, the model favorably differs from the available olfactory bulb models. The model is basic and provides further refinement of the architecture, an increase in the number of modules, and the modeling of the learning process.  相似文献   

14.
The localization of four subtypes of Ca2+-dependent protein kinase C (PKC) in the main and accessory olfactory bulb was examined by immunocytochemistry by using specific antibodies against each PKC subtype. In the main olfactory bulb, alpha-PKC was densely localized in a large number of granule cells and in a few tufted cells, and faint immunoreactivity was seen in some periglomerular cells. betaI-PKC was intensely found in periglomerular cells and tufted cells. gamma-PKC immunoreactivity was present in the external plexiform layer, the internal plexiform layer, and the granular layer, but the immunoreactivity was found only in the neuropils. Little, if any, betaII-PKC was seen in the main olfactory bulb. On the other hand, the intense immunoreactivity for betaII-PKC was seen in periglomerular cells of the accessory olfactory bulb. The betaI-PKC and gamma-PKC were also present in periglomerular cells of the accessory olfactory bulb, while alpha-PKC was localized only in granule cells. Double staining study in the accessory olfactory bulb showed that betaII-PKC was present in the GABAergic periglomerular cells, while betaI-PKC localized to the non-GABAergic periglomerular cells; gamma-PKC was expressed in both GABAergic and non-GABAergic cells. These findings suggest that four calcium-dependent subtypes of PKC play different roles in the olfactory bulb and definite expression of betaII-PKC strongly suggested the involvement of this subtype in a specific function in the accessory olfactory bulb.  相似文献   

15.
H Shinohara  K Kato  T Asano 《Acta anatomica》1992,144(2):167-171
The immunohistochemical localization of proteins Gi1 (plus Gi3). Gi2 and Go was studied in the olfactory epithelium and the main olfactory bulb of rats, using purified antibodies to the respective alpha subunits and beta gamma subunits of these G proteins. In the olfactory epithelium, only a restricted population of olfactory cells was immunopositive for Gi2 alpha, but others were not. The immunoreactivity for Gi1 alpha/Gi3 alpha was not observed. The olfactory epithelium was immunopositive for both Go alpha and beta gamma, but its apical surface was immunopositive only for beta gamma. In the main olfactory bulb, all layers were intensely immunopositive for Go alpha and beta gamma but weakly for Gi2 alpha. In contrast to the negative or weak immunostainings in the olfactory nerve fiber layer and glomeruli, the molecular and the internal granular layers were intensely immunopositive for Gi1 alpha/Gi3 alpha. These findings suggest the functional difference among Gi1/Gi3, Gi2 and Go in the signal transduction in the olfactory system.  相似文献   

16.
17.
Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells in the olfactory bulb create a dense interaction network, reorganizing sensory representations of odors and, consequently, perception. Large-scale computational models are needed for revealing how the collective behavior of this network emerges from its global architecture. We propose an approach where we summarize anatomical information through dendritic geometry and density distributions which we use to calculate the connection probability between mitral and granule cells, while capturing activity patterns of each cell type in the neural dynamical systems theory of Izhikevich. In this way, we generate an efficient, anatomically and physiologically realistic large-scale model of the olfactory bulb network. Our model reproduces known connectivity between sister vs. non-sister mitral cells; measured patterns of lateral inhibition; and theta, beta, and gamma oscillations. The model in turn predicts testable relationships between network structure and several functional properties, including lateral inhibition, odor pattern decorrelation, and LFP oscillation frequency. We use the model to explore the influence of cortex on the olfactory bulb, demonstrating possible mechanisms by which cortical feedback to mitral cells or granule cells can influence bulbar activity, as well as how neurogenesis can improve bulbar decorrelation without requiring cell death. Our methodology provides a tractable tool for other researchers.  相似文献   

18.
Inhibition in the olfactory bulb of the carp was studied by recording potentials from secondary neurons intracellularly. Three types of inhibition — trace, early, and late — can arise in neurons of the olfactory bulb. Trace inhibition corresponds to hyperpolarization about 20 msec in duration, which is closely connected with the spike, but it is not after-hyperpolarization but an IPSP. Early and late inhibition correspond to IPSPs of different parameters. The first has a latency of 0–50 msec (relative to the spike) and a duration of 60–400 msec; the corresponding values for the second are 100–400 msec and 0.5–3 sec. The possible mechanisms of these types of inhibition are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 650–656, November–December, 1971.  相似文献   

19.
The olfactory bulb employs lateral and feedback inhibitory pathways to distribute odor information across parallel assemblies of mitral and granule cells. The pathways involve dendritic action potentials that can interact with a variety of voltage-dependent conductances and synaptic transmission to produce complex and dynamic patterns of activity. Electrical coupling also helps to ensure proper coordination and synchronization of these patterns. These mechanisms provide numerous options for dynamic modulation and control of signaling in the olfactory bulb.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号