首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.  相似文献   

2.
Lou WY  Zong MH  Duan ZQ 《Bioresource technology》2008,99(18):8752-8758
In the present study, such carbohydrate-derived catalysts have been prepared from various carbohydrates such as d-glucose, sucrose, cellulose and starch. The catalytic and textural properties of the prepared catalysts have been investigated in detail and it was found that the starch-derived catalyst had the best catalytic performance. The carbohydrate-derived catalysts exhibited substantially higher catalytic activities for both esterification and transesterification compared to the two typical solid acid catalysts (sulphated zirconia and Niobic acid), and gave markedly enhanced yield of methyl esters in converting waste cooking oils containing 27.8wt% high free fatty acids (FFAs) to biodiesel. In addition, under the optimized reaction conditions, the starch-derived catalyst retained a remarkably high proportion (about 93%) of its original catalytic activity even after 50 cycles of successive re-use and thus displayed very excellent operational stability. Our results clearly indicate that the carbohydrate-derived catalysts, especially the starch-derived catalyst, are highly effective, recyclable, eco-friendly and promising solid acid catalysts that are highly suited to the production of biodiesel from waste oils containing high FFAs.  相似文献   

3.
《Process Biochemistry》2010,45(4):446-450
Compared to immobilized lipase, soluble lipase has the merits of lower cost and faster reaction rate, thus much attention has been paid to soluble lipase-mediated methanolysis for biodiesel (fatty acid methyl ester, FAME) production in recent years. Our previous study showed that soluble lipase NS81006 could effectively catalyze the methanolysis of soybean oil (triglyceride, TG) for FAME preparation in oil/water biphasic system. Study on the related mechanism of soluble lipase NS81006-mediated methanolysis of TG was carried out in this paper. Based on the analysis of substances change in the reaction process, mechanism model was hypothesized and the model parameters were simulated by Matlab. The simulated model was validated further. The results showed that in the reaction process of soluble lipase NS81006-mediated methanolysis of TG in oil/water biphasic system, TG proceeded three-step hydrolysis to generate FFA (free fatty acid), and then FFA transformed into FAME by esterification with methanol. During the whole process, FFA is mainly generated through the hydrolysis of TG and intermediate DG (diglyceride), while the hydrolysis of FAME could be ignored.  相似文献   

4.
The new type of catalyst for fatty acid methyl esters (FAME or biodiesel) synthesis with K2CO3 as active component on alumina/silica support was synthesized using sol–gel method. Corresponding catalyst (xerogel) was prepared by 12 h drying the wet gel in air at 300 °C, 600 °C or 1000 °C at atmospheric pressure. The catalysts activity in the methanolysis of sunflower oil was compared to the activity of the pure K2CO3. The effects of various reaction variables on the yield of FAME were investigated. It was found that the temperature of 120 °C and methanol to oil molar ratio of 15:1, are optimal conditions for FAME synthesis with synthesized catalyst. Repeated use of same amount of catalyst indicated that effect of potassium leaching obviously existed leading to decrease of catalyst activity.  相似文献   

5.
In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 °C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.  相似文献   

6.
A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 degrees C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 degrees C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as gamma-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%).  相似文献   

7.
Enzymatic transesterification of waste cooking oil, comprising fats, oil and grease (FOG), to produce fatty acid methyl esters (FAME) i.e. biodiesel, was investigated using a novel strain of the fungus Aspergillus niger, immobilized as a whole‐cell biocatalyst. Response surface methodology (RSM), with a five‐level‐three‐factor central composite rotatable design, was used to optimize the reaction and analyze the relationship of reaction variables and their coinfluent on the response i.e. FAME yield. Independent variables that affect the transesterification reaction include temperature, feedstock water content and enzyme amount. Using RSM, a second‐order polynomial equation was derived for FAME yield using multiple regression analysis. The second‐order polynomial regression model was highly significant (P<0.001) in predicting the actual relationship between the response and the variables, where a linear relationship was apparent between observed and predicted values (R2=0.9651). In addition, the predicted determination coefficient q2 i.e. 0.7723, also proved that the model has a high predictive ability. The validation experiments, under optimized conditions, showed that the predicted value of maximum FAME yield (i.e. 91.3%) was in close agreement with the experimental value (i.e. 91.8%).  相似文献   

8.
An economic feasibility study on four batch processes for the production of biodiesel ranging from 1452 tonnes/year (5000 l/day) to 14,520 tonnes/year (50,000 l/day) is conducted. The four processes assessed are the (1) KOH-W process, characterized by a homogeneous KOH catalyst and hot water purification process; (2) KOH-D process, characterized by a homogeneous KOH catalyst and vacuum FAME distillation process; (3) CaO-W process, characterized by a heterogeneous CaO catalyst and hot water purification process; and (4) CaO-D process, characterized by a heterogeneous CaO catalyst and vacuum FAME distillation process. The costs of the waste cooking oil, fixed costs, and manufacturing costs for producing 7260 tonnes/year (25,000 l/day) of biodiesel by means of the four processes are estimated to be $248–256, $194–232, and $584–641 per tonne of biodiesel, respectively. Among the four processes, the manufacturing costs involved in the CaO-W process are the lowest, in the range from 1452 tonnes/year to 14,520 tonnes/year.  相似文献   

9.
Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs.This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production - 85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.  相似文献   

10.
The high cost of commercial lipases limits their industrial application in the production of biodiesel or fatty acid methyl esters (FAME). This disadvantage has encouraged the search for lipase-producing microorganisms (LPMs) as potential whole cell catalysts for FAME production. The aim of this study, therefore, was to evaluate innovative procedures for easy selection and testing of LPMs as a low-cost whole cell catalyst, based on catalytic performance, methanol tolerance and physico-chemical cell surface properties. The latter (in particular the cell surface hydrophobicity and charge) were analyzed because of their crucial role in microbial adhesion to surfaces and the concomitant increase in cell immobilization and bioavailability of hydrophobic substrates. Biocatalysis experiments performed in the presence of nutrient, rapeseed oil and methanol were an effective tool for studying and identifying, in just two experiments, the capacity of different LPMs as biocatalysts in organic media, as well as the methanol tolerance of the cell and the lipase. This indicates the potential for using live microorganisms for FAME production. Another finding was that the inhibitory effect of methanol is more significant for lipase activity than LPM growth, indicating that the way in which alcohol is supplied to the reaction is a crucial step in FAME production by biocatalysts. According to these results, the application of these innovative assessments should simplify the search for new strains which are able to effectively catalyze the FAME production process.  相似文献   

11.
The most common catalysts for biodiesel production are homogeneous basic catalysts. In the present paper, a comparison is made of different basic catalysts (sodium methoxide, potassium methoxide, sodium hydroxide and potassium hydroxide) for methanolysis of sunflower oil. All the reactions were carried out under the same experimental conditions in a batch stirred reactor and the subsequent separation and purification stages in a decanter. The analytical methods included gas chromatography and the determination of fat and oil conventional parameters. The biodiesel purity was near 100 wt.% for all catalysts. However, near 100 wt.% biodiesel yields were only obtained with the methoxide catalysts. According to the material balance of the process, yield losses were due to triglyceride saponification and methyl ester dissolution in glycerol. Obtained biodiesel met the measured specifications, except for the iodine value, according to the German and EU draft standards. Although all the transesterification reactions were quite rapid and the biodiesel layers achieved nearly 100% methyl ester concentrations, the reactions using sodium hydroxide turned out the fastest.  相似文献   

12.
The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.  相似文献   

13.
Biodiesel production catalyzed by free lipase has been drawing attention for its lower cost and faster reaction rate compared to immobilized lipase. It has been found that free lipase NS81006 could efficiently catalyze alkyl esters production and a certain amount of water is demonstrated to be necessary for the catalytic process. The effect of water content on liquid lipase NS81006-mediated methanolysis and ethanolysis for biodiesel production was first explored respectively in this paper. It was found that with water content ranging from 3% to 10% (based on oil weight), there was no significant difference in the final alkyl ester yield either in NS81006-mediated methanolysis or ethanolysis process, while the quality of biodiesel varied obviously. The acid value as well as the contents of monoglyceride and diglyceride were much lower in the lower water-containing system. With the water content decreasing from 10% to 3%, the acid value reduced from 8.24 to 4.89 mg KOH/g oil, and the content of MAG and DAG dropped to 0.31 and 0.22, from 0.62 and 0.74, respectively. Lipase could maintain rather good stability with proper alcohol adding strategy and the gradual reduction in biodiesel yield in the repeated uses resulted from the accumulation of by-product glycerol. The continuous running of lipase-mediated methanolysis of waste cooking oil was successfully realized at 30L reactor and a final methyl ester yield of over 90% could be obtained.  相似文献   

14.
Biodiesel consists of fatty acids short chain alkyl esters produced through transesterification and esterification of fats and oils. Production of biodiesel is strongly affected by the purity of raw lipids, and catalysts play important role in these processes. Although direct utilization of impure feedstocks is more economical, their use necessitates development of effective catalysts to overcome hindering influences of impurities. In this study, sulfuryl chloride, thionyl chloride, acetyl chloride, p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, dimethylsulfate and sulfuric acid were investigated as catalysts for the production of biodiesel because acids have higher tolerance to water and free fatty acids in oils and can simultaneously catalyze both the esterification and transesterification reactions. Sulfuryl chloride was found to be an effective catalyst for production of biodiesel from soybean oil, its waste oil and microalgal lipids.  相似文献   

15.
Biodiesel production—current state of the art and challenges   总被引:3,自引:0,他引:3  
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. JIMB 2008: BioEnergy—special issue.  相似文献   

16.
In the present study conversion of waste cooking oil to biodiesel has been carried out via simultaneous esterification and transesterification reaction over silica sulfuric acid as a solid acid catalyst. The process variables that influence the fatty acid methyl ester (FAME) conversion, such as reaction temperature, reaction time, catalyst concentration and methanol to oil molar ratio were investigated and optimized using Taguchi method. Highest FAME production obtained under the optimized condition was 98.66 %. Analysis of variance revealed that temperature was the most significant factor effecting the FAME production among four factors studied. From the kinetic study, the reaction was found to follow pseudo first-order kinetics and rate constant of the reaction under optimum condition was 0.00852 min?1.  相似文献   

17.
Three different biodiesel production processes were simulated using the SuperPro Designer program. The process for producing biodiesel from soybean oil and methanol was designed using commercial chemical catalysts. This chemical process was compared with the biological process catalyzed by immobilized enzymes. In addition, a hybrid process consisting of catalytic biodiesel production and enzymatic glycerol carbonate production was designed and simulated for the conversion of waste glycerol to value-added chemical. Finally, the economics and productivity of these processes were evaluated to determine economic feasibility.  相似文献   

18.
The potential of restaurant waste lipids as biodiesel feedstocks   总被引:15,自引:0,他引:15  
Biodiesel is usually produced from food-grade vegetable oils that are more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Waste cooking oils, restaurant grease and animal fats are potential feedstocks for biodiesel. These inexpensive feedstocks represent one-third of the US total fats and oil production, but are currently devoted mostly to industrial uses and animal feed. The characteristics of feedstock are very important during the initial research and production stage. Free fatty acids and moisture reduce the efficiency of transesterification in converting these feedstocks into biodiesel. Hence, this study was conducted to determine the level of these contaminants in feedstock samples from a rendering plant. Levels of free fatty acids varied from 0.7% to 41.8%, and moisture from 0.01% to 55.38%. These wide ranges indicate that an efficient process for converting waste grease and animal fats must tolerate a wide range of feedstock properties.  相似文献   

19.
The feasibility of using the commercial immobilized lipase from Candida antarctica (Novozyme 435) to synthesize biodiesel from sunflower oil in a solvent-free system has been proved. Using methanol as an acyl acceptor and the response surface methodology as an optimization technique, the optimal conditions for the transesterification has been found to be: 45 oC, 3% of enzyme based on oil weight, 3:1 methanol to oil molar ratio and with no added water in the system. Under these conditions, >99% of oil conversion to fatty acid methyl ester (FAME) has been achieved after 50 h of reaction, but the activity of the immobilized lipase decreased markedly over the course of repeated runs. In order to improve the enzyme stability, several alternative acyl acceptors have been tested for biodiesel production under solvent-free conditions. The use of methyl acetate seems to be of great interest, resulting in high FAME yield (95.65%) and increasing the half-life of the immobilized lipase by about 20.1 times as compared to methanol. The reaction has also been verified in the industrially feasible reaction system including both a batch stirred tank reactor and a packed bed reactor. Although satisfactory performance in the batch stirred tank reactor has been achieved, the kinetics in a packed bed reactor system seems to have a slightly better profile (93.6 ± 3.75% FAME yield after 8–10 h), corresponding to the volumetric productivity of 48.5 g/(dm3 h). The packed bed reactor has operated for up to 72 h with almost no loss in productivity, implying that the proposed process and the immobilized system could provide a promising solution for the biodiesel synthesis at the industrial scale.  相似文献   

20.
The detrimental effects of waste cooking oil on sewer system attracted attention toward its proper management and reusing this waste oil for making biodiesel provides commercial and environmental advantage. In the present study, biodiesel has been successfully produced from waste cooking oil and dimethyl carbonate by transesterification, instead of the conventional alcohol. In this optimization study, the effect of various reaction conditions such as solvent, time and temperature, molar ratio of DMC to oil, enzyme loading and reusability, on the yield of fatty acid methyl ester (FAME) has been studied. The Maximum conversion of FAMEs achieved was 77.87% under optimum conditions (solvent free system, reaction time of 24 h, 60 °C, molar ratio of DMC to oil 6:1, catalyst amount 10% Novozym 435 (based on the oil weight)). Moreover, there was no obvious loss in the conversion after lipases were reused for 6 batches under optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号