首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of three limiting nutrients, calcium pantothenate, vitamin B12 and cobalt chloride (CoCl2), on syngas fermentation using “Clostridium ragsdalei” was determined using serum bottle fermentation studies. Significant results from the bottle studies were translated into single- and two-stage continuous fermentor designs. Studies indicated that three-way interactions between the three limiting nutrients, and two-way interactions between vitamin B12 and CoCl2 had a significant positive effect on ethanol and acetic acid formation. In general, ethanol and acetic acid production ceased at the end of 9 days corresponding to the production of 2.01 and 1.95 g L−1 for the above interactions. Reactor studies indicated the three-way nutrient limitation in two-stage fermentor showed improved acetic acid (17.51 g g−1 cells) and ethanol (14.74 g g−1 cells) yield compared to treatments in single-stage fermentors. These results further support the hypothesis that it is possible to modulate the product formation by limiting key nutrients during C. ragsdalei syngas fermentation.  相似文献   

2.
As a vital flavor compound, acetoin is extensively used in dairy products and drinks industry. In this study, Bacillus subtilis was engineered to metabolize glucose and xylose as substrates for acetoin production. Initially, gene araE from B. subtilis, encoding the xylose transport protein AraE, was placed under the control of the constitutive promoter P43 for over-expression. Batch cultures showed that 10 g/L xylose was depleted completely in 32 h. Subsequently, genes xylA and xylB from Escherichia coli, encoding xylose isomerase and xylulokinase respectively, were introduced into B. subtilis, and the recombinant turned out to assimilate glucose and xylose without preference. In shake-flask fermentations, 5.5 g/L acetoin with a yield of 0.70 mol (mol sugar)−1 was obtained by the optimum strain BSUL13 under microaerobic conditions, which offered a metabolic engineering strategy on engineering microbe as cell factory for the production of high-valued chemicals from renewable resource.  相似文献   

3.
Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2′-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80 °C, and for the decolorization of indigo carmine at pH 8.0 and 60 °C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2 h at 37 °C. The apparent Km of the enzyme displayed on spores was 443 ± 124 μM for ABTS with a Vmax of 150 ± 16 U/mg spores. Notably, 1 mg of spores displaying B. subtilis laccase (3.4 × 102 U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2 h. The spore reactor (0.5 g of spores corresponding to 1.7 × 105 U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60 °C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent.  相似文献   

4.
Aeromonas hydrophila 4AK4 normally produces copolyesters (PHBHHx) consisting of 3-hydroxybutyrate (C4) and 3-hydroxyhexanoate (C6). Wild type and recombinant A. hydrophila 4AK4 (pSXW02) expressing vgb and fadD genes encoding Vitreoscilla haemoglobin and Escherichia coli acyl-CoA synthase respectively, were found able to produce homopolyester poly(3-hydroxyvalerate) (PHV) (C5) on undecanoic acid as a single carbon source. The recombinant grew to 5.59 g/L cell dry weight (CDW) containing 47.74 wt% PHV in shake flasks when growth was conducted in LB medium and PHV production in undecanoic acid. The cells grew to 47.12 g/L CDW containing 60.08 wt% PHV in a 6 L fermentor study. Physical characterization of PHV produced by recombinant A. hydrophila 4AK4 (pSXW02) in fermentor showed a weight average molecular weight (Mw) of 230,000 Da, a polydispersity of 3.52, a melting temperature of 103 °C and a glass transition temperature of −15.8 °C. The degradation temperature at 5% weight loss of the PHV was around 258 °C.  相似文献   

5.
Zhao CH  Chi Z  Zhang F  Guo FJ  Li M  Song WB  Chi ZM 《Bioresource technology》2011,102(10):6128-6133
In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2 g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2 l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6 g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C16:0, C18:1 and C18:2, especially C18:1 (50.6%).  相似文献   

6.
ABPS-1, a new water-soluble polysaccharide with molecular weight of 26 kDa and a specific optical rotation of +170° (c 1.0, H2O), was extracted from the roots of Acanthophyllum bracteatum by warm water and further successively purified through DEAE-cellulose A52 and Sephadex G-100 columns. Monosaccharide analysis revealed that the ABPS-1 was composed of Glc, Gal and Ara with a relative molar ratio of 1.4:5.2:1.0. Its structural features were elucidated by a combination of FT-IR, methylation and GC-MS analysis, periodate oxidation and Smith degradation, partial acid hydrolysis and 13C and 1H NMR spectroscopy. The data obtained indicate that ABPS-1 possessed a backbone of α-(1 → 6)-linked Gal with branches attached to O-2 by α-1 → linked Glc and at O-3 by α-1 → linked Gal and by α-(1 → 3)-linked Ara. The in vitro antioxidant activity showed that ABPS-1 possesses DPPH radical-scavenging activity in a concentration-dependent manner with an EC50 value of 2.6 mg/ml.  相似文献   

7.
Statistical optimization of the biodegradation of two keratinous wastes directed by Bacillus subtilis recombinant cells was carried out by means of a response surface methodology. A Box–Behnken design was employed to predict the optimal levels of three variables namely, keratin percent, incubation time and inoculum size. Analysis of variance revealed that, only keratin percent had the highest significant effect. Canonical analysis and ridge max analysis were used to get the optimal levels of the three predictors along with the optimum levels of the responses. The optimal sets of predicted and validated levels of the three variables were [7.69% (w/v) feathers, 96.58 h and 1.28% (v/v) inoculum size] and [8% (w/v) feathers, 98.45 h, 3.9% (v/v) inoculum size] to achieve the highest levels of soluble proteins (1.25–1.7 mg/ml) and NH2-free amino groups (245.82–270.0 μmol leucine/ml), respectively upon using three optimized feathers-based media. These values represented 83.67–100% and 100% adequacy for the models of soluble proteins and NH2-free amino groups, respectively. While, [8.23% (w/v) sheep wool, 5.52% (v/v) inoculum size and 46.58 h] and [8.33% (w/v) sheep wool, 5.89% (v/v) inoculum size and 63.46 h] were the optimal sets of predicted and validated levels of the above variables to achieve the highest yields of soluble proteins (3.4–4.6 mg/ml) and NH2-free amino groups (290.9–302.0 μmol leucine/ml), respectively upon using three optimized sheep wool-based media. These values represented 100% adequacy for the models of soluble proteins and NH2-free amino groups. By the end of the optimization strategy, a fold enhancement (2.14–2.43 and 1.78–2.12) in the levels of released soluble proteins and NH2-free amino groups, respectively was obtained upon using three optimized feathers-based media. However, a fold enhancement (4.25–5.75 and 2.42–2.5) in the levels of soluble proteins and NH2-free amino groups, respectively was obtained upon using three optimized sheep wool-based media. Data would encourage pilot scale optimization of the biodegradation of these wastes.  相似文献   

8.
Fly-ash-tolerant Rhizobium strains were isolated from plants grown in fly-ash-contaminated soil, axenically under laboratory conditions. Saplings of both plants were raised in N2-free Jenson medium and inoculated with 2.6 × 108 cell ml−1 and 5.2 × 108 cell ml−1 of culture after 10 d of growth. Plants were transferred into 100% fly-ash under natural condition. Rhizobium-inoculated plants grown on 100% fly-ash showed marked increase in relation to root-shoot length, biomass yield, photosynthetic pigment, protein content and nodulation frequency compared to uninoculated plant grown in control (100% fly-ash). Inoculation of fly-ash-tolerant Rhizobium increased the accumulation of Fe, Zn, Cu Cd and Cr in different tissues vis-à-vis enhanced translocation of metals to the aboveground part of plant. Although inoculation of fly-ash-tolerant Rhizobium strains (VR-1 and VA-1) enhanced the translocation of more Fe to shoot parts, nevertheless, the amount of Rhizobium inoculants supplied to the plant was found to be very important since it has a positive role in increasing plant growth through increased N2 supply via nitrogenase activity. Results suggest that an integrated approach employing biotechnological means and inoculation of plants with host-specific fly-ash-tolerant Rhizobium strain may prove a stimulus to a fly-ash management programme.  相似文献   

9.
Pulse-amplitude modulated (PAM) fluorometry allows instantaneous estimates of photosynthetic rates, but may well produce variable measurements of photosynthetic activity depending on time of day, recent light history, internal fluctuations, and environmental variability. To investigate this, we compare estimates of diurnal variability in relative photosynthetic performance for the giant kelp, Macrocystis pyrifera (L.) C. Agardh, obtained from PAM fluorometry at three depths during 3 days characterized by different light conditions, and for two different blade ages. Sampling in the mid morning, late morning, early afternoon and late afternoon, we examined diurnal changes in relative photosynthetic performance in meristematic tissue and older blades occurring near the bottom, in the mid water, and at the water surface. Measures of maximum relative electron transport rates (rETRmax), minimum saturating irradiance (Ek), photosynthetic efficiency (α) and maximum quantum yield (Fv/Fm) show that giant kelp blades in the mid water and near the bottom exhibit little to no photosynthetic changes during the day. Near the surface, however, blades exhibit photosynthetic characteristics similar to light-adapted species in that they begin the day acclimated to low light, acclimate to increasing irradiance during the day, and end the day acclimated to low light. Consequently, while estimates of rETRmax were highest during the midday for all sample depths and days, they were also always highest near the surface for both old blades (112.16 ± 8.7, 98.6 ± 14.7, 70.16 ± 5.7) and meristematic tissue (109.0 ± 9.0, 86.9 ± 1.9, 59.2 ± 11.6, surface, mid water and bottom, respectively). Similar patterns were observed for Ek for both old blades (169.2 ± 5.4, 88.0 ± 11.2, 83.8 ± 5.2) and meristematic tissue (138.4 ± 11.5, 96.6 ± 4.69, 68.4 ± 10.6). In contrast, estimates of Fv/Fm were lowest near the surface during the midday for both old blades (0.6 ± 0.02, 0.73 ± 0.69, 0.75 ± 0.01) and meristematic tissue (0.58 ± 0.02, 0.69 ± 0.05, 0.74 ± 0.01, surface, mid water and bottom, respectively). These patterns coincided with similar patterns in ambient light, which was most variable and reached its greatest values near the surface during the midday.  相似文献   

10.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

11.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

12.
Aquaculture produces a significant amount of wastes, consisting of metabolic by-products, leading to general deterioration of water quality. An alternative for reducing nutrient excess is the use of biofilters that can effectively remove nutrients from the water. A laboratory study was conducted to test the efficacy of the macroalgae Gracilaria caudata and the microcrustacean Artemia franciscana to remove nutrients from aquaculture effluents. The experiment consisted of three treatments: macroalgae (1) macroalgae and Artemia (2), and only Artemia (3). The results indicated that the treatment 2 was the most efficient in removing the nitrogenated forms. The maximum reduction values were: NH4 = 29.8%; NO2 = 100%; NO3 = 72.4% and DIN = 44.5%. In contrast, the nutrients concentration was significantly higher at the end of the experiment in the treatment 3 than in the other treatments (ANOVA: p < 0,001). PO4 showed a significant increase during the experiment, especially in treatments 2 and 3 (ANOVA: p < 0.001). The results showed that G. caudata and A. franciscana performed well in absorbing nitrogenated forms. This indicates that the use of these organisms as biofilters has the potential for being an ecologically correct practice and may contribute to improving the water quality of coastal regions.  相似文献   

13.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

14.
Sequential fermentation for the production of two invaluable biopolymers, levan and poly-ε-lysine (ε-PL), has been successfully developed. It involves fermentation of Bacillus subtilis (natto) Takahashi in sucrose medium to produce levan, separation of levan product from small remaining sugar molecules by ultrafiltration and fermentation of the remnant from levan production by Streptomyces albulus to produce ε-PL. In the process, 50-60 g/L of levan was produced (100% recovery after precipitation by ethanol). The remnant from levan production with glucose adjusted to 30 g/L and with combined use of yeast extract (10 g/L), (NH4)2SO4 (2 g/L) and basal salts was proven to be suitable for ε-PL production. 4.37 g/L of ε-PL accumulation (85% recovery after purification) was reached in 72 h using two-stage fermentation with control of pH. The process of using remnant (waste) from levan fermentation for the second biopolymer (ε-PL) production is unprecedented and the products obtained are environmental-friendly.  相似文献   

15.
An unsterile and continuous fermentation process was developed based on a halophilic bacterium termed Halomonas TD01 isolated from a salt lake in Xinjiang, China. The strain reached 80 g/L cell dry weight containing 80% poly(3-hydroxybutyrate) (PHB) on glucose salt medium during a 56 h fed-batch process. In a 14-day open unsterile and continuous process, the cells grew to an average of 40 g/L cell dry weight containing 60% PHB in the first fermentor with glucose salt medium. Continuous pumping of cultures from the first fermentor to the second fermentor containing the nitrogen-deficient glucose salt medium diluted the cells but allowed them to maintain a PHB level of between 65% and 70% of cell dry weight. Glucose to PHB conversions were between 20% and 30% in the first fermentor and above 50% in the second one. This unsterile and continuous fermentation process opens a new area for reducing the cost in polyhydroxyalkanoates production.  相似文献   

16.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

17.
We investigated the germination requirements of the species Stachys germanica L. subsp. bithynica (Boiss.) Bhattacharjee (Lamiaceae). We studied the effects of scarification, short-time moist chilling (+4 °C) for 15 and 30 days, and various doses of gibberellic acid (GA3; 0, 100, 150 and 250 ppm), Kinetin (KIN; 50 ppm) and a combination of 250 ppm GA3 and 50 ppm KIN. The hormone and moist chilling treatments were carried out under both continuous darkness (20 °C) and photoperiodic (20/10 °C; 12/12 h, respectively) conditions. Seeds failed to germinate in response to short-time moist chilling treatments with distilled water under both continuous darkness and photoperiodic conditions. Seeds were found to have dormancy. Treatments with GA3 or a combination of GA3 and KIN were successful at breaking seed dormancy. A maximum of 37% of the seeds germinated after GA3 application in all series. When only KIN was applied at a 50 ppm concentration, germination (12%) was found only with moist chilling for 30 days under continuous darkness. The highest germination rates were found in seeds treated with combination of 250 ppm GA3 and 50 ppm KIN. In the combination treatments, while the moist chilling treatments for 15 days resulted in 68 and 73% germination, respectively, these rates were up to 95% in the moist chilling treatments for 30 days under continuous darkness and photoperiodic conditions. Mean germination time (MGT) in GA3 and KIN combinations was lower than in other treatments. Scarification with 80% sulphuric acid did not promote germination. The characteristics of physiological dormancy of S. germanica ssp. bithynica seeds are consistent with conditions of existence in the in alpine habitat of this species.  相似文献   

18.
Wei X  Luo M  Li W  Yang L  Liang X  Xu L  Kong P  Liu H 《Bioresource technology》2012,103(1):273-278
Silver nanoparticles (AgNPs) were obtained by solar irradiation of cell-free extracts of Bacillus amyloliquefaciens and AgNO3. Light intensity, extract concentration, and NaCl addition influenced the synthesis of AgNPs. Under optimized conditions (solar intensity 70,000 lx, extract concentration 3 mg/mL, and NaCl content 2 mM), 98.23 ± 0.06% of the Ag+ (1 mM) was reduced to AgNPs within 80 min, and the ζ-potential of AgNPs reached −70.84 ± 0.66 mV. TEM (Transmission electron microscopy) and XRD (X-ray diffraction) analysis confirmed that circular and triangular crystalline AgNPs with mean diameter of 14.6 nm were synthesized. Since heat-inactivated extracts also mediated the formation of AgNPs, enzymatic reactions are likely not involved in AgNPs formation. A high absolute ζ-potential value of the AgNPs, possibly caused by interaction with proteins likely explains the high stability of AgNPs suspensions. AgNPs showed antimicrobial activity against Bacillus subtilis and Escherichia coli in liquid and solid medium.  相似文献   

19.
A preliminary experiment was carried out to study the effect of dietary pyridoxine (PN) on thermal tolerance of Labeo rohita fingerlings exposed to endosulfan (1/10th 96 h LC50=0.2 ppb) stress, reared at 26.0±0.5 °C to assess its culture potential in different agro-climatic zones. Two hundred seventy fingerlings were randomly distributed into six treatment groups in triplicate. Five iso-caloric and iso-nitrogenous purified diets were prepared with graded levels of pyridoxine. Six treatment groups were T0 (10 mg PN+without endosulfan), T1 (0 mg PN+endosulfan), T2 (10 mg PN+endosulfan), T3 (50 mg PN+endosulfan), T4 (100 mg PN+endosulfan) and T5 (200 mg PN+endosulfan). After feeding for 60 days, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were determined in each group. There was significant (P<0.05) effect of dietary pyridoxine on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed diets supplemented with 100 and 200 mg PN/kg diet compared to other experimental groups. Positive correlations were observed between CTmax and LTmax (R2=0.85) as well as between CTmin and LTmin (R2=0.97). The effect was more prominent on lower thermal tolerance limit (CTmin and LTmin). The overall results obtained in this preliminary study indicated that pyridoxine supplementation at 100 mg PN/kg diet enhances the thermal tolerance of endosulfan exposed L. rohita fingerlings.  相似文献   

20.
Thermogenic characteristics and evaporative water loss were measured at different temperatures in Tupaia belangeri. The thermal neutral zone (TNZ) of T. belangeri was 30–35 °C. Mean body temperature was 39.76±0.27 °C and mean body mass was 100.86±9.09 g. Basal metabolic rate (BMR) was 1.38±0.03 ml O2/g h. Average minimum thermal conductance (Cm) was 0.13±0.01 ml O2/g h °C. Evaporative water loss in T. belangeri increased when the temperature rose; the maximal evaporative water loss was 3.88±0.41 mg H2O/g h at 37.5 °C. The results may reflect features of small mammals in the sub-tropical plateau region: T. belangeri had high basal metabolic rate and high total thermal conductance, compared with the predicted values based on their body mass whilst their body temperatures are relatively high; T. belangeri has high levels of evaporative water loss and poor water-retention capacity. Evaporative water loss plays an important role in temperature regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号