首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.  相似文献   

2.
Adenovirus serotype 37 (Ad37) belongs to species D and can cause epidemic keratoconjunctivitis, whereas the closely related Ad19p does not. Primary cell attachment by adenoviruses is mediated through receptor binding of the knob domain of the fiber protein. The knobs of Ad37 and Ad19p differ at only two positions, Lys240Glu and Asn340Asp. We report the high-resolution crystal structures of the Ad37 and Ad19p knobs, both native and in complex with sialic acid, which has been proposed as a receptor for Ad37. Overall, the Ad37 and Ad19p knobs are very similar to previously reported knob structures, especially to that of Ad5, which binds the coxsackievirus-adenovirus receptor (CAR). Ad37 and Ad19p knobs are structurally identical with the exception of the changed side chains and are structurally most similar to CAR-binding knobs (e.g., that of Ad5) rather than non-CAR-binding knobs (e.g., that of Ad3). The two mutations in Ad19p result in a partial loss of the exceptionally high positive surface charge of the Ad37 knob but do not affect sialic acid binding. This site is located on the top of the trimer and binds both alpha(2,3) and alpha(2,6)-linked sialyl-lactose, although only the sialic acid residue makes direct contact. Amino acid alignment suggests that the sialic acid binding site is conserved in several species D serotypes. Our results show that the altered viral tropism and cell binding of Ad19p relative to those of Ad37 are not explained by a different binding ability toward sialyl-lactose.  相似文献   

3.
Transformed cells often display knobs (or blebs) distributed over their surface throughout most of interphase. Scanning electron microscopy (SEM) and time-lapse cinematography on CHO-K1 cells reveal roughly spherical knobs of 0.5–4 μm in diameter distributed densely around the cell periphery but sparsely over the central, nuclear hillock and oscillating in and out of the membrane with a period of 15–60 sec. Cyclic AMP derivatives cause the phenomenon of reverse transformation, in which the cell is converted to a fibroblastic morphology with disappearance of the knobs. A model was proposed attributing knob formation to the disorganization of the jointly operating microtubular and microfilamentous structure of the normal fibroblast. Evidence for this model includes the following: (1) Either colcemid or cytochalasin B (CB) prevents the knob disappearance normally produced by cAMP, and can elicit similar knobs from smooth-surfaced cells; (2) knob removal by cAMP is specific, with little effect on microvilli and lamellipodia; (3) immunofluorescence with antiactin sera reveals condensed, amorphous masses directly beneath the membrane of CB-treated cells instead of smooth, parallel fibrous patterns of reversetransformed cells or normal fibroblasts; (4) transmission electron microscopy (TEM) of sections show dense, elongated microfilament bundles and microtubules parallel to the long axis of the reverse-transformed CHO cell, but sparse, random microtubules throughout the transformed cell and an apparent disordered network of 6-nm microfilaments beneath the knobs; (5) cell membranes at the end of telophase, when the spindle disappears and cleavage is complete, display typical knob activity as expected by this picture.  相似文献   

4.
We used the combination of an atomic force microscope and a light microscope equipped with epifluorescence to serially image Plasmodium falciparum-infected erythrocytes. This procedure allowed us to determine unambiguously the presence and developmental stage of the malaria parasite as well as the number and size of knobs in singly, doubly, and triply infected erythrocytes. Knobs are not present during the ring stage of a malaria infection but a lesion resulting from invasion by a merozoite is clearly visible on the erythrocyte surface. This lesion is visible into the late trophozoite stage of infection. Knobs begin to form during the early trophozoite stage of infection and have a single-unit structure. Our data suggest the possibility that a two-unit structure of knobs, which was reported by Aikawa et al. (1996, Exp. Parasitol. 84, 339-343) using atomic force microscopy, appears to be a double-tipped image. The number of knobs per unit of host cell surface area is directly proportional to parasite number in both early and late trophozoite stages. These results indicate that knob formation by one parasite does not influence knob formation by other parasites in a multiply infected erythrocyte. In addition, knob volume is not influenced by either parasite stage or number at the late trophozoite stage, indicating that the number of component molecules per knob is constant throughout the parasite maturation process.  相似文献   

5.
There is a well-established clinical association between hemoglobin genotype and innate protection against Plasmodium falciparum malaria. In contrast to normal hemoglobin A, mutant hemoglobin C is associated with substantial reductions in the risk of severe malaria in both heterozygous AC and homozygous CC individuals. Irrespective of hemoglobin genotype, parasites may induce knob-like projections on the erythrocyte surface. The knobs play a major role in the pathogenesis of severe malaria by serving as points of adherence for P. falciparum-infected erythrocytes to microvascular endothelia. To evaluate the influence of hemoglobin genotype on knob formation, we used a combination of atomic force and light microscopy for concomitant topographic and wide-field fluorescence imaging. Parasitized AA, AC, and CC erythrocytes showed a population of knobs with a mean width of approximately 70 nm. Parasitized AC and CC erythrocytes showed a second population of large knobs with a mean width of approximately 120 nm. Furthermore, spatial knob distribution analyses demonstrated that knobs on AC and CC erythrocytes were more aggregated than on AA erythrocytes. These data support a model in which large knobs and their aggregates are promoted by hemoglobin C, reducing the adherence of parasitized erythrocytes in the microvasculature and ameliorating the severity of a malaria infection.  相似文献   

6.
P Acharya  S Chaubey  M Grover  U Tatu 《PloS one》2012,7(9):e44605
Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer's cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.  相似文献   

7.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

8.
The coxsackie B virus and adenovirus (Ad) receptor (CAR) functions as an attachment receptor for multiple Ad serotypes. Here we show that the Ad serotype 9 (Ad9) fiber knob binds to CAR with much reduced affinity compared to the binding by Ad5 and Ad12 fiber knobs as well as the knob of the long fiber of Ad41 (Ad41L). Substitution of Asp222 in Ad9 fiber knob with a lysine that is conserved in Ad5, Ad12, and Ad41L substantially improved Ad9 fiber knob binding to CAR, while the corresponding substitution in Ad5 (Lys442Asp) significantly reduced Ad5 binding. The presence of an aspartic acid residue in Ad9 therefore accounts, at least in part, for the reduced CAR binding affinity of the Ad9 fiber knob. Site-directed mutagenesis of CAR revealed that CAR residues Leu73 and Lys121 and/or Lys123 are critical contact residues, with Tyr80 and Tyr83 being peripherally involved in the binding interaction with the Ad5, Ad9, Ad12, and Ad41L fiber knobs. The overall affinities and the association and dissociation rate constants for wild-type CAR as well as Tyr80 and Tyr83 CAR mutants differed between the serotypes, indicating that their binding modes, although similar, are not identical.  相似文献   

9.
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM–based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.  相似文献   

10.
Knobs, knob proteins and cytoadherence in falciparum malaria.   总被引:1,自引:0,他引:1  
1. The sequestration of trophozoite and schizont infected erythrocytes (IRBC) in post-capillary venules of host internal organs causes most of the morbidity and mortality in falciparum malaria. It is a knob mediated cytoadherence phenomenon where knobs act as the focal junction between IRBC and host endothelial cell. Knobless (K-) parasites, isolated from cultures (not yet isolated from in vivo), do not cause virulent infections. Knobs thus play an important role in pathophysiology of falciparum malaria. 2. The chemical composition of knobs is partly explored, several proteins (Known as knob proteins) have been identified. According to their function they can be classified as (a) knob-inducing protein, "KAHRP" (b) knob-associated cytoadherent proteins, e.g. PFEMP-1, modified band 3 and an antigen recognized by monoclonal 33G2 and (c) knob-associated structural protein, e.g. PFEMP-2/MESA/PP-300. Most of them show size polymorphism among different isolates. Only KAHRP and MESA/PFEMP-2 have been studied at molecular level. Their chromosomal locations have been identified such as KAHRP on chromosome 2 and MESA/PFEMP-2 on chromosomes 5 and 6. 3. The receptor molecules on endothelial cells for knob ligands have been identified and partially characterized. 4. Knob ligands and their receptor molecules can play an important role in developing the immunotherapeutic reagents. 5. Based on the available data a tentative hypothesis has been proposed about the loss of knobs in vitro. Nevertheless, this needs further support from other experimental evidence. 6. Future work should be directed towards the structure and function of knob proteins and their interactions with each other as well as with host proteins. Regulation of expression of knobs and knob protein(s), evaluation of knob antigens for immunotherapy of severe falciparum malaria and for a malaria vaccine also require further investigations.  相似文献   

11.
Mitotic anaphase cells of highly friable and embryogenic calluses which had been induced from immature embryos of two inbred lines of maize that have contrasting levels of heterochromatic knobs were analysed for the presence of abnormalities 3, 6, 9 and 12 months after the initiation of culture. A total of 500 typical anaphases was scored at each time point, and various aberrations, such as delay in the separation of sister chromatides, chromosome bridges (single, double and multiple) and chromosome fragments, were revealed to occur extensively in the cultures of both genotypes. Preparations after C-banding revealed that primary breakages often occurred inside knobs or at junction regions between the euchromatin and the heterochromatin of the knobs. Figures characterized by the delayed separation of sister chromatids, which originated preferentially at the knob level and was considered to be an initial event in the development of breakages, were observed at constant frequencies throughout the experiment. Increasing numbers of aberrant cells were detected with time, mainly due to the accumulation of cells with chromosome bridges and fragments. Several mitotic figures suggested the occurrence of breakagefusion-bridge cycles that were initiated by broken chromosomes. The overall frequencies of aberrant cells were similar for both genotypes, despite the differences in knob composition. However, callus cultures induced from the genotype having the higher level of knobs had more aberrant cells with abnormalities that involved several chromosomes, such as multiple bridges and multiple fragments.  相似文献   

12.

Background

The virulence of Plasmodium falciparum malaria is related to the parasite’s ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density.

Methodology/Principal Findings

We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA) were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions.

Conclusions/Significance

The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the infected host.  相似文献   

13.

Background

Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.

Methods

A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.

Results

Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.

Conclusions

High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.  相似文献   

14.
Monosynaptic reflex response of spinal motoneurons to graded afferent volleys has been studied in natural populations and in a representative sample of individual motoneurons. By analysis of input-response relations certain of the requirements for initiation of reflex discharge have been defined. Initation of motoneuron discharge by monosynaptic afferent excitatory volleys results from the development of transmitter potentiality among members of a pool. Transmitter potentiality is considered to have the following characteristics: 1. It is a function of the number of active excitatory synaptic knobs, the degree to which such knobs are aggregated on the motoneuron soma, and the intensity of action per knob. 2. It has an appreciable spatial decrement and rapid temporal decay. 3. While transmitter potentiality has considerable dependence on number of active excitatory knobs, proximity of such knobs is an important variable. Total activation of a discrete zone does not appear to be necessary for initiation of discharge. In addition to initiation of discharge, volleys in monosynaptic afferent excitatory fibers facilitate response otherwise engendered. Such facilitation depends upon the production of an increment in transmitter potentiality. Facilitator potentiality has the following characteristics: 1. It depends principally on number of active excitatory synaptic knobs and intensity of action per knob. 2. Facilitatory action may result from synchronous activity in knobs interspersed among aggregations of knobs otherwise activated, thus fulfilling spatial requirements for transmitter potentiality. Alternatively a residual facilitation may result from a generalized action. 3. Residual facilitation has a slow temporal decay in comparison with transmitter potentiality.  相似文献   

15.
The zeta potential (ZP) is an electrochemical property of cell surfaces that is determined by the net electrical charge of molecules exposed at the surface of cell membranes. Membrane proteins contribute to the total net electrical charge of cell surfaces and can alter ZP through variation in their copy number and changes in their intermolecular interactions. Plasmodium falciparum extensively remodels its host red blood cell (RBC) membrane by placing 'knob'-like structures at the cell surface. Using an electrophoretic mobility assay, we found that the mean ZP of human RBCs was -15.7 mV. In RBCs infected with P. falciparum trophozoites ('iRBCs'), the mean ZP was significantly lower (-14.6 mV, p<0.001). Removal of sialic acid from the cell surface by neuraminidase treatment significantly decreased the ZP of both RBCs (-6.06 mV) and iRBCs (-4.64 mV). Parasite-induced changes in ZP varied by P. falciparum clone and the presence of knobs on the iRBC surface. Variations in ZP values were accompanied by altered binding of iRBCs to human microvascular endothelial cells (MVECs). These data suggest that parasite-derived knob proteins contribute to the ZP of iRBCs, and that electrostatic and hydrophobic interactions between iRBC and MVEC membranes are involved in cytoadherence.  相似文献   

16.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

17.
Differential screening of cDNA libraries constructed from knobby and predominantly knobless Plasmodium falciparum isolates, identified the sequence SD17. Chromosome blotting experiments have shown that this sequence, which is located on chromosome 2 of most isolates, was deleted in the cloned parasite line E12 of the FCQ27/PNG isolate. Here we show that erythrocytes infected with the SD17-containing cloned line D10 have typical knob structures on their surfaces, whereas those infected with the line E12 lack knobs. An expression clone was constructed from SD17 and used to affinity purify antibodies from the sera of individuals living in areas of Papua New Guinea where malaria is endemic. The antibodies reacted in immunoblotting experiments with a single polypeptide that varied in Mr from 85,000 to 105,000 among different isolates. The antigen was not expressed in the knobless clone E12. Postembedding immunoelectron microscopy showed localization of the antigen over the knobs of FC27 and two other isolates, largely on the cytoplasmic side. We conclude that the parasite antigen corresponding to clone SD17 is a knob protein.  相似文献   

18.
Summary A cytological survey of 425 samples of maize from all over Italy has brought to light some further knob-like structures in addition to those already known, on pachytene chromosomes 1, 3, 8 and 10 and with particularly high frequency, on 7.The general average for knob number is anyway rather low, about 2,7. The data show very few knobs on the chromosomes from the maize of southern Italy, a slightly higher number on the chromosomes of maize from central Italy, and about twice the number in north Italy. This is also true of the single knobs studied, with very limited exceptions.B-type chromosomes, although very rare, show a negative correlation with the knob number.The number and the type of knobs may be of great importance in studying evolutionary processes, as well as in breeding programs.Work subsidized by the Rockefeller Foundation, New York.  相似文献   

19.
The spatial distribution of functional groups causes a charge distribution that often has a close relationship with its biofunctions. To understand them of the protein molecules, measurements of the charge distribution under physiological conditions are desired. Atomic force microscopy (AFM) has been utilized to measure the surface charge density by measuring the electric double layer (EDL) force caused by the overlap of the EDLs on the surfaces of the AFM tip and the biomolecule. Here, we demonstrated the surface charge density measurement of a single streptavidin (SA) protein molecule by the three-dimensional force mapping method based on frequency modulation AFM (FM-AFM). The SA has a strong affinity to biotin because of the electrostatic interactions between the molecules. Therefore, the surface charge density measurements of the biotin-binding sites and other surface areas of the molecule have been anticipated. However, the surface charge density of the surfaces other than the biotin-binding side has never been measured. We demonstrate the surface charge density measurement of the top surface of the single SA molecule, which is perpendicular to the biotin-binding sides, with a controlled orientation using DNA origami as a template by FM-AFM in an electrolyte solution. The surface charge density of the top surface of the SA molecule was estimated by fitting the experimental force curves to the Derjaguin-Landau-Verwey-Overbeck theory. We found that the surface charge density of the top surface of the SA molecule is comparable to those reported earlier for the biotin-binding sides of the molecule. We expect that, by using the DNA origami technology, one can control the orientation of a biomolecule attached to the substrate and measure the surface charge density of the specific surface areas of the biomolecule to obtain information that will help us to understand the relationship between their structures and functions.  相似文献   

20.
Equational and disjunctional separation of heterozygous heterochromatic regions was observed relative to chiasma positions at diakinesis. Equational separation of heterozygous knobs was frequently observed and always accompanied by a chiasma distal to the knob. This is considered evidence that in these cases a crossover had occurred in a position proximal to the knob and had terminalized to a position distal to the knob by the time of fixation for observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号