首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that both IFN-gamma and IFN-beta are produced in vivo and in vitro by spleen cells obtained from mice experiencing a chronic form of graft vs host disease (GVHD). Further, we have shown that in vitro production of IFN-beta by spleen cells from GVHD mice may play a role in the suppressed in vitro mitogen responsiveness of these cells. This study was undertaken to investigate if treatment of such mice with mAb to IFN-gamma or IFN-beta could alter the immunosuppression or lymphoid hypoplasia associated with chronic GVHD. GVHD was induced across minor histocompatibilities by the i.v. injection of B10.D2 spleen cells into sublethally irradiated BALB/c mice. These mice were given daily injections for 20 days of one of the following: 1) mAb to IFN-gamma, 2) mAb to IFN-beta, or 3) control IgG. Histologic examination of these mice at 21 to 22 days post transplantation revealed that mice treated with mAb to IFN-beta or control IgG had dramatic hypoplasia of the thymus, spleen, and lymph nodes which was similar to untreated GVHD mice. Mice given mAb to IFN-gamma, however, had no lymphoid hypoplasia and had a near normal gross and histologic appearance of their thymus, spleen, and lymph node tissue when compared with syngeneic controls. In vitro mitogen-induced proliferative responses of spleen and lymph node cells obtained from GVHD mice or GVHD mice treated with mAb to IFN-beta were severely suppressed or absent. In contrast, spleen and lymph node cells from GVHD mice given mAb to IFN-gamma were capable of giving a significant in vitro proliferative response to Con A, PHA, and LPS. Further, natural suppressor cell activity and spontaneous production of IFN-beta, a characteristic of this form of GVHD, was absent in spleen cells obtained from GVHD mice treated with mAb to IFN-gamma. These results further identify the IFN as playing critical roles in the pathogenesis of GVHD.  相似文献   

2.
Natural suppression has been described in several immunologic systems in which splenocytes are not only incapable of generating an immune response, but are also able to non-specifically suppress normal splenocyte reactivity. Natural suppressor cells exist in such transitory immune deficiency states as graft vs host disease, irradiation recovery, and during neonatal development. We have found that when splenocytes from each of these three systems were placed in culture, IFN was produced spontaneously without stimulus. This spontaneous IFN production was augmented by the addition of IL-2 or granulocyte-macrophage-CSF to cell cultures. However, these lymphokines induced little or no IFN from normal splenocytes. This unusual IFN production is especially interesting since all samples have been typed to be IFN-beta. Additionally, greater IFN-beta was produced by these spleen cells during active suppression of the MLR of normal spleen cells. In fact, antibody to IFN-beta was shown to partially reverse the natural suppression mediated by graft vs host disease splenocytes in the MLR. Thus, IFN-beta production correlates extremely well with natural suppressor states. As mice begin to recover normal immune responses in all three systems, IFN-beta ceases to be produced spontaneously in culture. These findings establish a previously undescribed IFN-beta-producing splenic phenotype and suggest that IFN-beta may contribute to the immunoregulation of natural suppressor systems.  相似文献   

3.
4.
Immunosuppression is a well-characterized consequence of chronic graft-versus-host disease (GVHD). We have previously shown that interferon (IFN) is produced in high levels during acute GVHD. Our objective in this study was to determine if IFN, as a cytokine with known immunosuppressive qualities, could be detected in mice experiencing chronic GVHD-induced immunosuppression. Two different experimental models were used to induce chronic GVHD. The first model involved the injection of parental strain spleen cells into adult F1 hybrids (AJ----B6AF1), while the second model utilized GVHD induced across minor histocompatibility barriers (B10.D2----BALB/c). Results indicated that significant levels of serum IFN-alpha/beta are present in mice undergoing chronic GVHD. Spleen cells from chronic GVHD mice were also shown to produce significant levels of IFN-alpha/beta upon in vitro culture in medium only. This IFN-alpha/beta production was greatly increased when GVHD spleen cells were cultured with either concanavalin A (Con A) or IL-2. In contrast, IFN-gamma production was undetectable in these Con A- or IL-2-containing cultures. Additionally, these same spleen cells which produced high levels of IFN-alpha/beta were immunosuppressed as measured by mitogen-induced cell proliferation. These results suggest that IFN-gamma production is defective in GVHD spleen cells, and that the presence of high IFN-alpha/beta production by GVHD mice may contribute to the immunosuppression associated with chronic GVHD.  相似文献   

5.
6.
Mannoprotein components from Candida albicans were investigated for their ability to induce production of tumor necrosis factor (TNF) by cultured splenocytes from naive or Candida-infected mice. Two chromatographically separated mannoproteins preparations, designated F1 and F2, were as able as the heat-inactivated Candida cells to induce the production of TNF from splenocytes of naive animals. In addition, they caused a significant augmentation of basic TNF secretion by splenocytes of Candida-infected animals. Experiments using plastic and/or nylon wool adherence, as well as treatments with antibodies depleting T or NK cells, consistently indicated that most if not all TNF was produced by splenic macrophages. In cultures of splenocytes from Candida-infected mice, mannoprotein addition also stimulated interferon-gamma (IFN-gamma) production by Thy 1.2 positive cells. Depletion of these cells or addition of anti-IFN-gamma antibodies abolished IFN production and reduced TNF secretion by adherent cells to the levels found in the cultures of mannoprotein-stimulated spleen cells from naive mice. These data add further evidence to the immunomodulatory properties possessed by some cell wall constituents of the human commensal microorganism C. albicans and suggest that IFN-gamma is endowed with a regulatory role in TNF production by mouse macrophages in vitro.  相似文献   

7.
IFN gamma production in cultures of spleen cells obtained from mice sensitized with TH69, a live Streptococcus faecalis preparation, was examined to determine how macrophages participate. It was demonstrated that sensitized spleen macrophages participated in enhanced IFN gamma production by T cells at an early stage (0-6 hr) of incubation, and that this production is mainly dependent on Ia-bearing macrophages In the reconstitution experiments where different combinations of spleen macrophages and T cells obtained from mice sensitized with TH69, OK-432, and BCG were used, T cells required that the identity between the sensitizing organisms in vivo and the stimulating organisms in vitro be the same for enhanced IFN gamma production while macrophages did not. Macrophage-mediated production of IFN gamma appears to be genetically restricted because IFN gamma was only produced in cultures where the H-2 region of macrophages and T cells matched. Further examination revealed that for macrophages to participate in enhanced IFN gamma production, first contact between cycloheximide-treated macrophages and T cells was required. Second, enhanced IFN gamma production occurred when culture supernatants of macrophages obtained from sensitized spleen cells were added to T cells. However, the addition of culture supernatant obtained from sensitized peritoneal macrophages resulted in inhibition of IFN gamma production. These results clearly showed the crucial role of macrophages in enhanced IFN gamma production by spleen T cells in vitro.  相似文献   

8.
Treatment of C57BL/6J (B6) murine splenocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes NK cells, CTL precursors, and the capacity to cause lethal graft-vs-host disease (GVHD) in irradiated B6 X DBA/2 F1 mice. In contrast, alloantigen-induced L3T4(+) Th cell function has been shown to be relatively preserved after exposure to this agent. The present studies assessed the effects of Leu-Leu-OMe treatment of donor cells on induction of lethal GVHD in other murine strain combinations. When irradiated B6 X CBAF1 mice were infused with T and NK cell-depleted B6 bone marrow cells and 3 to 30 X 10(6) B6 spleen cells, uniformly lethal GVHD was observed. However, B6 X CBAF1 recipients of T and NK-depleted B6 bone marrow cells and similar numbers of Leu-Leu-OMe-treated B6 spleen cells demonstrated 90 to 100% long term survival. In contrast, Leu-Leu-OMe treatment of B6 donor cells had no beneficial effect on mortality rates in irradiated (B6 X B6-C-H-2bm12)F1 (B6 X bm12F1) recipients. When B6 spleen cells were stimulated in vivo or in vitro with either B6 X CBAF1 or B6 X bm12F1 stimulator cells, the capacity to generate alloantigen-specific CTL was abolished comparably by Leu-Leu-OMe treatment. Thus, the dramatic difference between the effects of Leu-Leu-OMe treatment of B6 spleen cells on the course of GVHD in B6 x CBAF1 and class II MHC only disparate B6 x bm12F1 recipients could not be explained by unique resistance of bm12-specific CTL precursors to Leu-Leu-OMe. These findings indicate that T cell effector mechanisms distinct from classic cell-mediated cytotoxicity are sufficient to generate lethal GVHD in class II MHC only disparate B6----B6 X bm12F1 mice.  相似文献   

9.
LRG47/Irgm1, a 47-kDa IFN-inducible GTPase, plays a major role in regulating host resistance as well as the hemopoietic response to intracellular pathogens. LRG47 expression in macrophages has been shown previously to be stimulated in vitro by bacterial LPS, a TLR4 ligand. In this study, we demonstrate that induction of LRG47 by LPS is not dependent on MyD88 signaling, but rather, requires STAT-1 and IFN-beta. In addition, LRG47-deficient mice are highly susceptible to LPS, but not TLR2 ligand-induced shock, an outcome that correlates with enhanced proinflammatory cytokine production in vitro and in vivo. Further analysis revealed that LPS-stimulated LRG47-deficient macrophages display enhanced phosphorylation of p38, a downstream response associated with TLR4/MyD88 rather than IFN-beta/STAT-1 signaling. In contrast, LPS-induced phosphorylation of IFN regulatory factor-3 and expression of IFN-beta or the type I IFN-regulated genes, CCL5 and CCL10, were unaltered in LRG47(-/-) cells. Together, these observations indicate that in LPS-stimulated murine macrophages LRG47 is induced by IFN-beta and negatively regulates TLR4 signaling to prevent excess proinflammatory cytokine production and shock. Thus, our findings reveal a new host-protective function for this GTPase in the response to pathogenic encounter.  相似文献   

10.
Induction of graft-vs-host disease (GVHD) in the parent-into-F1 model is dependent on the presence of T cells in the donor inoculum. Although in vivo activation of donor T cells in response to F1 alloantigens is thought to be critical to GVHD induction, direct evidence of activated donor T cells has been lacking in this model. In the present study, spleen cells from acute or chronic GVHD mice were studied for evidence of T cell activation at multiple intervals early after GVHD induction. Spleen cells from both acute and chronic GVHD mice exhibited striking elevations in spontaneous proliferation and IL-2 production, which were maximal 24 to 48 h after GVHD induction. Persistent lower levels of spontaneous in vitro activity were observed for spleen cells from mice tested 7 to 9 days after GVHD induction. In both forms of GVHD, increased spontaneous proliferation and IL-2 production were dependent on the presence of donor CD4+ T cells. These results strongly support the presence of activated donor T cells in vivo. Furthermore, these data imply that despite the significant differences in outcome, acute and chronic GVHD share a common early event.  相似文献   

11.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

12.
The complete repertoire of cellular and molecular determinants that influence graft-vs-host disease (GVHD) is not known. Using a well-established murine model of GVHD (B6-->bm12 mice), we sought to elucidate the role of the donor non-T cell compartment and molecular determinants therein in the pathogenesis of GVHD. In this model the acute GVHD-inducing effects of purified B6 wild-type (wt) CD4(+) T cells was inhibited by wt non-T cells in a dose-dependent manner. Paradoxically, unlike the chronic GVHD phenotype observed in bm12 mice transplanted with B6wt unfractionated splenocytes, bm12 recipients of B6ccr2-null unfractionated splenocytes developed acute GVHD and died of IFN-gamma-mediated bone marrow aplasia. This switch from chronic to acute GVHD was associated with increased target organ infiltration of activated CD4(+) T cells as well as enhanced expression of Th1/Th2 cytokines, chemokines, and the antiapoptotic factor bfl1. In vitro, ccr2(-/-) CD4(+) T cells in unfractionated splenocytes underwent significantly less activation-induced cell death than B6wt CD4(+) T cells, providing another potential mechanistic basis along with enhanced expression of bfl1 for the increased numbers of activated T cells in target organs of B6ccr2(-/-) splenocyte-->bm12 mice. Collectively, these findings have important clinical implications, as they implicate the donor non-T cell compartment as a critical regulator of GVHD and suggest that ccr2 expression in this cellular compartment may be an important molecular determinant of activation-induced cell death and GVHD pathogenesis.  相似文献   

13.
We have previously reported that mouse bone marrow cells produce high levels of interferon-alpha/beta (IFN-alpha/beta) after 5 to 6 days of in vitro culture with irradiated allogenic spleen cells. The current study was initiated to determine whether or not T cells are important for alloantigen-induced IFN-alpha/beta production by mouse bone marrow cells. Bone marrow cells and spleen cells were obtained from C57BL/6 mice. These cells were treated with different monoclonal antisera and complement, and then were cultured 5 to 6 days with irradiated DBA spleen cells. The results from these experiments indicated that optimal IFN-alpha/beta production by alloantigen-stimulated bone marrow cells required Lyt-1+2+ T cells. In addition, when bone marrow cells obtained from nu/nu B10 mice were cultured with alloantigen, only low levels of IFN were produced when compared with IFN production by bone marrow cells obtained from normal littermate B10 mice. The addition of nylon wool-enriched splenic T cells to cultures containing bone marrow cells and alloantigen resulted in an augmentation of IFN-alpha/beta production by three-fold to fivefold. Furthermore, bone marrow cells obtained from alloantigen-immunized mice produced much higher levels of IFN-alpha/beta and in a shorter period of time (2 to 3 days) when compared with bone marrow cells obtained from control or non-immunized mice. Cyclosporin A (CsA) has been shown to inhibit predominantly T cell-dependent responses. The effect of CsA on IFN production by alloantigen-stimulated bone marrow and spleen cells was investigated. The addition of CsA at concentrations as low as 0.1 micrograms/ml inhibited not only IFN-gamma production by alloantigen-stimulated spleen cells, but also IFN-alpha/beta production by alloantigen-stimulated bone marrow cells. In contrast, IFN-alpha/beta production by Newcastle disease virus-infected spleen cells, bone marrow cells, or L cells was not inhibited by the addition of CsA (1 microgram/ml). Thus, the ability of bone marrow cells to produce high levels of IFN-alpha/beta after in vitro culture with alloantigen is dependent upon T cells resident in the bone marrow. IFN-alpha/beta production by alloantigen-stimulated bone marrow cells may play a major role in the pathogenesis associated with graft-vs-host disease and in T cell regulation of hematopoiesis.  相似文献   

14.
We demonstrated previously that mice treated with bacterial or oligonucleotide DNA containing unmethylated CpG motifs are transiently protected against lethal parenteral challenge with the intracellular bacterium Francisella tularensis Live Vaccine Strain (LVS). Here we explore the cellular basis of this protection. Wild-type mice that were treated with CpG oligonucleotide DNA and challenged with a lethal dose of LVS survived, while mice lacking TLR9 did not. In vitro, treatment of LVS-infected macrophages and/or naive splenocytes with oligo DNA had no impact on intracellular bacterial replication. In contrast, in vitro co-culture of LVS-infected macrophages with splenocytes obtained from mice treated with oligo DNA in vivo resulted in control of intracellular LVS growth. Control was reversed by antibodies to interferon-gamma or to tumor necrosis factor-alpha and by inhibition of nitric oxide, and to a lesser degree by antibodies to Interleukin-12. Further, splenocytes from DNA-primed normal, T cell KO, B cell KO, lymphocyte-deficient scid, or perforin KO mice all controlled intra-macrophage LVS growth. Enriched DNA-primed natural killer cells, but not B cells, clearly controlled intracellular LVS growth. Thus, NK cells contribute to DNA-mediated protection by production of cytokines including IFN-gamma and TNF-alpha, resulting in nitric oxide production and control of intracellular Francisella replication.  相似文献   

15.
The transfer of listeria-immune splenocytes into non-immune mice markedly increases host resistance to listeriosis. To study the mechanism for this enhancement, we compared the inflammatory response to infection in nonimmune and adoptively immunized mice. Despite much better containment of bacterial growth, adoptively immunized animals accumulated significantly fewer phagocytes (neutrophils and macrophages) in the spleen and liver than controls. Immune T cells not only inhibited phagocyte accumulation but also reduced the in vitro anti-listerial activity of splenocytes. Significant differences in phagocyte accumulation were observed even when the initial listeria dose was adjusted to produce comparable spleen listeria loads in immune and non-immune animals. However, bone marrow and peripheral blood phagocyte counts were similar in both groups. Depletion of Lyt-2+ cells (using mAb and C) from donor splenocytes prevented the transfer of protection and increased phagocyte accumulation without altering listeria-dependent IFN-gamma production by donor or recipient splenocytes in vitro. L3T4 depletion did not affect host resistance or phagocyte accumulation even though it reduced in vitro interferon production by donor cells. Hence the different effects of L3T4+ and Lyt-2+ cells in vivo cannot be explained simply by variations in IFN production. We suggest this paradoxical suppression of phagocyte accumulation during adoptive transfer may reflect lysis of bacteria-laden phagocytes by listeria-specific Lyt-2+ cells in vivo. Selective destruction of older, heavily infected cells might contribute to host resistance by eliminating a potential site for intracellular proliferation of bacteria.  相似文献   

16.
17.
Aging induces a number of changes in the immune system, including the involution of the thymus which results in the loss of thymic hormone production and alteration in T cell function. One age-dependent change in immune response is the increasing risk of developing acute or chronic form of graft-versus-host disease (GVHD) following bone marrow transplantation as the age of the recipient increases. A murine model of GVHD that has been extensively studied is one in which injection of C57BL/6 spleen cells into unirradiated B6D2F1 mice results in an acute form of GVHD characterized by cytolytic T lymphocytes (CTL), suppressor cells, runting, and occasionally death. In contrast, injection of DBA/2J spleen cells results in a chronic form of GVHD characterized by a lack of CTL and hyperproduction of immunoglobulin and autoantibodies. This study shows that the GVHD response of DBA/2J spleen cells is dependent on the age of the donor DBA/2J mice. If spleen cells from DBA/2J mice older than 3 months are injected into B6D2F1 recipients, CTL and lack of immunoglobulin production indicative of acute GVHD result. Administration of thymosin fraction 5, a collection of thymic hormones, to DBA/2J mice older than 3 months caused spleen cells from these treated mice to give a GVHD response characteristic of the chronic form of GVHD in B6D2F1 recipients. Thus, thymic hormones were able to modulate the changes in GVHD responses of DBA/2 lymphocytes that occur as the mice age. Preliminary fractionation of TF5 has indicated that there are at least two active thymic peptides present in TF5.  相似文献   

18.
Using a dimethylbenzanthracene-induced immunogenic nonmetastatic murine mammary adenocarcinoma in BALB/c mice, our previous work has shown that splenocytes from tumor bearers have reduced responses to both mitogens and Ag including tumor-associated Ag. NK and cytotoxic T cell activities are also reduced in splenocytes of tumor bearers. Mac-1+2+ macrophages induced in mammary tumor bearers are capable of down-regulating lymphocyte responses to mitogens and tumor-associated Ag by cell to cell contact interaction and increased PGE2 production. We have found that the tumor constitutively releases a granulocyte-macrophage (GM)-CSF-like factor in vivo and in vitro, which may be responsible for the systemic increase in cells of the macrophage lineage in tumor-bearing mice. A tumor cell line established from the in vivo tumor expresses and releases GM-CSF as shown by Northern and Western blot analyses. Daily i.p. injections for 3 wk of 10,000 U of rGM-CSF into normal mice induces hemopoietic and immunologic alterations similar to those observed in tumor bearers. Mac-1+ and/or Mac-2+ macrophages can also be detected in the spleens and bone marrow of the mice treated with rGM-CSF. Additionally, splenocytes from rGM-CSF-treated mice have reduced responses to mitogens and their peritoneal exudate cells can cause in vitro down-regulation of proliferative responses of lymphocytes from normal mice. The suppression can be partially reversed by the addition of indomethacin to the cultures suggesting that PGE2 may contribute to the effect. rGM-CSF enhances the in vitro release of PGE2 by the spleen, bone marrow, and peritoneal cells of normal mice. These data indicate that the high levels of GM-CSF constitutively produced by the tumor may be responsible for the hemopoietic changes and immunologic alterations observed in tumor-bearing mice.  相似文献   

19.
Irradiated CBA/J mice transplanted with H-2 compatible, minor histocompatibility disparate B10.BR bone marrow develop graft-versus-host disease (GVHD) if mature T lymphocytes are added to the marrow inoculum. In the setting of mild GVHD (receiving 10(4) or 10(5) T cells), by phenotypic analysis, lymphoid reconstitution occurs normally within 4 to 6 wk but there is a profound deficiency in the ability of splenic lymphocytes to respond to polyclonal activators such as LPS and Con A. This unresponsiveness is attributable to active suppression mediated by cells that express Thy-1 and can be removed with leucine methyl ester treatment. Thus, splenocytes from mice with GVHD suppress responses of normal T and B lymphocytes. Moreover, depletion of these suppressor cells restores normal function to splenocytes from mice with GVHD, and B cells isolated from these mice respond normally to T-dependent and -independent stimulation. Finally, IFN-gamma plays an important role in this suppression, because a neutralizing anti-IFN-gamma mAb significantly removes suppression of normal cells and restores functional responses of lymphocytes from mice with GVHD. These results provide insights into the mechanisms of immunodeficiency associated with GVHD, and suggest novel strategies for possible therapies for this disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号