首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.  相似文献   

2.
Vasoactive intestinal peptide (VIP) has potent antiproliferative and anti-inflammatory functions in the immune system. Two structurally distinct G-protein-associated receptors, VIP receptor type 1 (VPAC1) and VIP receptor type 2 (VPAC2), mediate the biological effects of VIP. The regulation of VIP receptor gene expression and the distribution of these receptors in different compartments of the human immune systems are unknown. This study reports, for the first time, a quantitative analysis of VPAC1 and VPAC2 mRNA expression in resting and activated T cells as well as in resting monocytes. Purified human peripheral blood CD4(+) T cells and CD8(+) T cells were stimulated via the TCR/CD3 receptor complex. Using the novel fluorometric-based kinetic (real-time) RT-PCR, we determined that VPAC1 is constitutively expressed in resting T cells and monocytes; the levels of expression were significantly higher in monocytes and CD4(+) T cells than in CD8(+) T cells. VPAC1 mRNA expression is significantly higher relative to VPAC2 in resting CD4(+) T cells and CD8(+) T cells. VPAC2 is expressed at very low levels in resting T cells but is not detectable in resting monocytes. In vitro stimulation of Th cells with soluble anti-CD3 plus PMA induced a T cell activation-dependent down-regulation of VPAC1. VPAC1 is down-regulated under conditions of optimal T cell stimulation. Our results suggest that selective VIP effects on T cell function may be mediated via selective expression of VPAC1 and VPAC2 on T cells and monocytes. Furthermore, down-regulation of VPAC1 in CD4(+) T cell subpopulations is highly correlated with T cell activation.  相似文献   

3.
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.  相似文献   

4.
The stimulatory effect of vasoactive intestinal peptide (VIP) and analogues on [Ca2+]i has been investigated in chinese hamster ovary (CHO) cells stably transfected with the reporter gene aequorin, and expressing either the human VPAC1or VPAC2 receptor in absence or in presence of the Galpha16. In cells that were not transfected with Galpha16 and expressed a similar density of receptors, the VIP induced [Ca2+]i ncrease was higher in VPAC1 than in VPAC2 receptor expressing cells. In aequorin/Galpha16 cotransfected cells, the VIP-induced response was higher, reaching 70 to 80% of the maximal calcium response, obtained after digitonin treatment, in response to both VPAC1 and VPAC2 receptor stimulation.The results suggest that in hematopoietic cells, which express both VIP receptors and Galpha16, the signalling pathway of VIP could be mediated through both cyclic AMP and [Ca2+]i increase.  相似文献   

5.
We mutated the vasoactive intestinal peptide (VIP) Asp(3) residue and two VPAC(1) receptor second transmembrane helix basic residues (Arg(188) and Lys(195)). VIP had a lower affinity for R188Q, R188L, K195Q, and K195I VPAC(1) receptors than for VPAC(1) receptors. [Asn(3)] VIP and [Gln(3)] VIP had lower affinities than VIP for VPAC(1) receptors but higher affinities for the mutant receptors; the two basic amino acids facilitated the introduction of the negatively charged aspartate inside the transmembrane domain. The resulting interaction was necessary for receptor activation. 1/[Asn(3)] VIP and [Gln(3)] VIP were partial agonists at VPAC(1) receptors; 2/VIP did not fully activate the K195Q, K195I, R188Q, and R188L VPAC(1) receptors; a VIP analogue ([Arg(16)] VIP) was more efficient than VIP at the four mutated receptors; and [Asn(3)] VIP and [Gln(3)] VIP were more efficient than VIP at the R188Q and R188L VPAC(1) receptors; 3/the [Asp(3)] negative charge did not contribute to the recognition of the VIP(1) antagonist, [AcHis(1),D-Phe(2),Lys(15),Arg(16),Leu(27)] VIP ()/growth hormone releasing factor (8-27). This is the first demonstration that, to activate the VPAC(1) receptor, the Asp(3) side chain of VIP must penetrate within the transmembrane domain, in close proximity to two highly conserved basic amino acids from transmembrane 2.  相似文献   

6.
Vasoactive intestinal peptide (VIP) is a neuromediator expressed widely in the nervous, gastrointestinal, respiratory, and immune systems. Two G protein-coupled receptors (GPCRs), designated VPAC1 and VPAC2, bind VIP with high affinity and transduce increases in [cyclic AMP](i) and [Ca(2+)](i). As there are no potent VPAC1- or VPAC2-selective antagonists, a hammerhead ribozyme (Rz) strategy capable of in vivo application was adopted to inactivate individual domains of VPAC1. Three Rzs were designed to cleave mRNA encoding the amino terminus, the third intracellular loop, and the cytoplasmic tail of human VPAC1 and were introduced by transfection into HEK-293 cells expressing recombinant human VPAC1. Each Rz specifically degraded VPAC1 mRNA and down-regulated VPAC1 protein and VIP-binding activity, as assessed by ribonuclease protection assays, Western blots, and binding of (125)I-VIP. Rz-mediated down-regulation of VPAC1 was associated with up to 75% suppression of VIP signaling of increases in [cyclic AMP](i) and [IP3](i), and of cyclic AMP response element-luciferase reports. The Rz specific for the amino terminus inhibited VPAC1 expression and signaling to the greatest extent. VIP-evoked cellular responses thus appear to be proportional to the level of VPAC1 expression. Specific Rzs may be powerful tools for manipulating tissue-specific contributions of GPCRs in vitro and in vivo.  相似文献   

7.
Vasoactive intestinal peptide (VIP) is involved in prostate cell proliferation and function. VIP and pituitary adenylate cyclase-activating peptide (PACAP) are similarly recognized by VPAC(1)/VPAC(2) receptors whereas PACAP binds with higher affinity than VIP to PAC(1) receptor. Here we systematically studied the presence and distribution of functional PAC(1), VPAC(1) and VPAC(2) receptors in human normal and malignant prostate tissue. Functional PACAP/VIP receptors were detected in normal and malignant prostate by adenylyl cyclase stimulation with PACAP-27/38 and VIP. RT-PCR experiments showed PAC(1) (various isoforms due to alternative splicing), VPAC(1) and VPAC(2) receptor expression at the mRNA level, whereas Western blots found the three receptor protein classes in normal and pathological conditions. No conclusive differences could be established when comparing control and cancer tissue samples. Immunohistochemistry showed a weaker immunostaining in tumoral than in normal epithelial cells for the three receptor subtypes. In conclusion, we demonstrate the expression of functional PAC(1), VPAC(1) and VPAC(2) receptors in human prostate as well as its maintenance after malignant transformation.  相似文献   

8.
9.
Yu R  Zhang H  Huang L  Liu X  Chen J 《Peptides》2011,32(2):216-222
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with potent anti-inflammatory properties, and its receptor, VPAC1, mediates most of the anti-inflammatory effects of VIP. Diabetes mellitus is characterized by increased oxidation and inflammation due to persistent hyperglycemia. This research was performed to investigate the effects of VIP and a VPAC1 agonist on streptozotocin (STZ)-induced type 1 diabetic mice. Intraperitoneal injection of VIP and VPAC1 agonist (50 nmol/kg/day in saline) over a 28-day period (1) decreased food intake, (2) increased body weight, (3) improved visceral index, (4) increased the fasting plasma insulin levels, (5) decreased the fasting plasma glucose, (6) improved the glucose tolerance, (7) decreased pancreas H2O2 and malondialdehyde (MDA) and (8) increased total antioxidant activity (T-AOC) in the liver, spleen and pancreas. The results of histopathological and immunohistochemical analysis showed that VIP and the VPAC1 agonist improved the structure and cellularity of islets and ameliorated the insulin-secreting activity of islets. Additionally, administration of VIP or the VPAC1 agonist not only significantly decreased the plasma TNFα and CRP and promoted IL-10 in diabetic mice but also blocked the increased NF-κB activity of pancreatic tissue in diabetic mice. Furthermore, the VPAC1 agonist displayed stronger effects than VIP. These results show that both VIP and VPAC1 agonist ameliorated STZ-induced diabetes and protected mice against oxidative stress and inflammation associated diabetes, with VPAC1 being the receptor most responsible for these positive effects in diabetic mice.  相似文献   

10.
Pan CQ  Hamren S  Roczniak S  Tom I  DeRome M 《Peptides》2008,29(3):479-486
Vasoactive intestinal peptide (VIP) binds to two receptors, VPAC1 and VPAC2. Non-selective VIP antagonists have been shown to inhibit human cancer cell proliferation and reduce tumor growth in mice. Many human cancers over-express VPAC1 but not VPAC2. We show that VPAC1-selective antagonists can inhibit human cancer cell proliferation and identify five positions in the VPAC1-selective antagonist PG 97-269 that may be responsible for VPAC1 selectivity. Position 16 appears to be particularly critical for selectivity, as demonstrated in the replacement of Arg16 of PG 97-269 with the native VIP amino acid; this single change results in greatly reduced VPAC1 binding and selectivity. Finally, we show that site-specific conjugation with a 22kDa polyethylene glycol (PEG) at the C-terminus of VPAC1-selective antagonists further improves VPAC1-selective binding and has minimal effect on antagonistic activity. Our studies have further solidified VPAC1 as a cancer target and offer the possibility of generating highly potent VPAC1-selective antagonists with minimal number of mutations to reduce the risk of immunogenicity and potentially prolonged duration of action to allow more efficient treatment regimen.  相似文献   

11.
Type 2 diabetes is characterized by an inadequate pancreatic beta-cell response to the progressive insulin resistance. Its pathogenesis is complex and has been connected with a state of preclinical chronic inflammation. Vasoactive intestinal peptide (VIP) and its receptors play a relevant role in the homeostasis of insulin secretion as well as in the control of inflammation. In particular, VIP receptor 1 (VPAC1) has been found to be down-modulated during inflammation, and to be associated with several diseases. The objective of this study was to compare the distribution of SNPs mapping in the VIP receptor 1 gene in cases with type 2 diabetes and matched controls. Seven hundred cases with type 2 diabetes (423 males and 277 females) and 830 random controls (419 males and 411 females) were analyzed for the distribution of three common SNPs mapping in the VPAC1 gene. The results show a significantly different genotype distribution of the SNP rs9677 in the 3’-UTR of VPAC1 in female cases with type 2 diabetes compared to gender-matched controls (ptrend = 6 × 10− 4). The rs9677 CC genotype confers the highest risk (OR: 2.1) and correlates with worse clinical parameters such as higher level of total cholesterol, higher LDL/HDL ratio and a higher HbA1c concentration. The genetic association reported here indicates that VIP/VPAC1 signaling can be a relevant pathway in the pathogenesis of type 2 diabetes in females suggesting that at least some aspects of the genetic predisposition to this disease can be gender-specific.  相似文献   

12.
In order to identify the receptor domains responsible for the VPAC1 selectivity of the VIP1 agonist, [Lys15, Arg16, Leu27] VIP (1-7)/GRF (8-27) and VIP1 antagonist, Ac His1 [D-Phe2, Lys15, Arg16, Leu27] VIP (3-7)/GRF (8-27), we evaluated their binding and functional properties on chimeric VPAC1/VPAC2 receptors. Our results suggest that the N-terminal extracellular domain is responsible for the selectivity of the VIP1 antagonist. Selective recognition of the VIP1 agonist was supported by a larger receptor area: in addition to the N-terminal domain, the first extracellular loop, as well as additional determinants in the distal part of the VPAC1 receptor were involved. Furthermore, these additional domains were critical for an efficient receptor activation, as replacement of EC1 in VPAC1 by its counter part in the VPAC2 receptor markedly reduced the maximal response.  相似文献   

13.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel neuropeptide with regulatory and trophic functions that is related to vasoactive intestinal peptide (VIP). Here we investigate the expression of specific PACAP receptors (PAC1) and common VIP/PACAP receptors (VPAC1 and VPAC2) in the human hyperplastic prostate by immunological methods. The PAC1 receptor corresponded to a 60-KDa protein whereas the already known VPAC1 and VPAC2 receptors possessed molecular masses of 58 and 68 KDa, respectively. The heterogeneity of VIP/PACAP receptors in this tissue was confirmed by radioligand binding studies using [125I]PACAP-27 by means of stoichiometric and pharmacological experiments. At least two classes of PACAP binding sites showing different affinities could be resolved, with Kd values of 0.81 and 51.4 nM, respectively. The order of potency in displacing [125I]PACAP-27 binding was PACAP-27 approximately equal to PACAP-38 > VIP. PACAP-27 and VIP stimulated similarly adenylate cyclase activity, presumably through common VIP/PACAP receptors. The PAC1 receptor was not coupled to activation of either adenylate cyclase, nitric oxide synthase, or phospholipase C. It appears to be a novel subtype of PAC1 receptor because PACAP-27 (but not PACAP-38 or VIP) led to increased phosphoinositide synthesis, an interesting feature because phosphoinositides are involved via receptor mechanisms in the regulation of cell proliferation.  相似文献   

14.
Zusev M  Gozes I 《Regulatory peptides》2004,123(1-3):33-41
Activity-dependent neuroprotective protein (ADNP) was shown to be a vasoactive intestinal peptide (VIP) responsive gene in astrocytes derived from the cerebral cortex of newborn rats. The present study was set out to identify VIP receptors that are associated with increases in ADNP expression in developing astrocytes. Using VIP analogues specific for the VPAC1 and the VPAC2 receptors, it was discovered that VIP induced changes in ADNP expression in astrocytes via the VPAC2 receptor. The constitutive synthesis of ADNP and VPAC2 was shown to be age-dependent and increased as the astrocyte culture developed. Pituitary adenylate cyclase-activating polypeptide (PACAP) also induced changes in ADNP expression. The apparent changes induced by VIP and PACAP on ADNP expression were developmentally dependent, and while stimulating expression in young astrocytes, an inhibition was demonstrated in older cultures. In conclusion, VIP, PACAP and the VPAC2 receptor may all contribute to the regulation of ADNP gene expression in the developing astrocyte.  相似文献   

15.
Increase of VPAC receptor s binding to the (16)gamma-glutamyl diaminopropane vasoactive intestinal peptide (VIP-DAP) agonist, a vasoactive intestinal polypeptide (VIP) structural analogue containing a positive charge at position 16, has confirmed the importance of a positive charge at this site. By investigating the effect of distance from the peptide backbone Calpha of a positive charge in position 16, data are reported here concerning: (i) a novel chemical method used for the synthesis of a new family of (16)gamma-glutamyl diamine VIP derivatives differing among them for single carbon atoms and including diaminoethane (VIP-DAE2), diaminopropane (VIP-DAP3), diaminobutane (VIP-DAB4), diaminopentane (VIP-DAP5), and diaminohexane (VIP-DAH6); (ii) functional characterization of these compounds on human VPAC1 and VPAC2 receptors. In more detail, the EC50 and IC50 values, when measured as a function of the alkylic chain length, show in more detail, that the use of VIP-DAB4 derivative changes the IC50 but not the EC50, thus indicating on hVPAC2 receptor an unexpected relationship between binding and activity that differs from that obtained on hVPAC1.  相似文献   

16.
Growth hormone (GH) is used or is being evaluated for efficacy in treatment of short stature, aspects of aging, cardiac disorders, Crohn's disease, and short bowel syndrome. Therefore, we synthesized several stable growth hormone-releasing factor (GRF) analogues that could be therapeutically useful. One potent analog, [D-Ala(2),Aib(8, 18,)Ala(9, 15, 16, 22, 24-26,)Gab(27)]hGRF(1-27)NH(2) (GRF-6), with prolonged infusion caused severe diarrhea in monkeys; however, it had no side-effects in rats. Because GRF has similarity to VIP/PACAP and VIPomas cause diarrhea, this study investigated the ability of this and other GRF analogues to interact with the VIP/PACAP receptors. Rat VPAC(1)-R (rVPAC(1)-R), human VPAC(1)-R (hVPAC(1)-R), rVPAC(2)-R and hVPAC(2)-R stably transfected CHO and PANC 1 cells were made and T47D breast cancer cells containing native human VPAC(1)-R and AR4-2J cells containing PAC(1)-R were used. hGRF(1-29)NH(2) had low affinity for both rVPAC(1)-R and rVPAC(2)-R while VIP had a high affinity for both receptors. GRF-6 had a low affinity for both rVPAC(1)-R and rVPAC(2)-R and very low affinity for the rPAC(1)-R. VIP had a high affinity, whereas hGRF(1-29)NH(2) had a low affinity for both hVPAC(1)-R and hVPAC(2)-R. In contrast GRF-6, while having a low affinity for hVPAC(2)-R, had relatively higher affinity for the hVPAC(1)-R. In guinea pig pancreatic acini, all GRF analogues were full agonists at the VPAC(1)-R causing enzyme secretion. These results demonstrate that in contrast to native hGRF(1-29)NH(2,) GRF-6 has a relatively high affinity for the human VPAC(1)-R but not for the human VPAC(2)-R, rat VPAC(1)-R, rat VPAC(2)-R or rat PAC(1)-R. These results suggest that the substituted GRF analog, GRF-6, likely causes the diarrheal side-effects in monkeys by interacting with the VPAC(1)-R. Furthermore, they demonstrate significant species differences can exist for possible therapeutic peptide agonists of the VIP/PACAP/GRF receptor family and that it is essential that receptor affinity assessments be performed in human cells or from a closely related species.  相似文献   

17.
18.
The widespread neuropeptide vasoactive intestinal peptide (VIP) has two receptors VPAC(1) and VPAC(2). Solid-phase syntheses of VIP analogs in which each amino acid has been changed to alanine (Ala scan) or glycine was achieved and each analog was tested for: (i) three-dimensional structure by ab initio molecular modeling; (ii) ability to inhibit (125)I-VIP binding (K(i)) and to stimulate adenylyl cyclase activity (EC(50)) in membranes from cell clones stably expressing human recombinant VPAC(1) or VPAC(2) receptor. The data show that substituting residues at 14 positions out of 28 in VIP resulted in a >10-fold increase of K(i) or EC(50) at the VPAC(1) receptor. Modeling of the three-dimensional structure of native VIP (central alpha-helice from Val(5) to Asn(24) with random coiled N and C terminus) and analogs shows that substitutions of His(1), Val(5), Arg(14), Lys(15), Lys(21), Leu(23), and Ile(26) decreased biological activity without altering the predicted structure, supporting that those residues directly interact with VPAC(1) receptor. The interaction of the analogs with human VPAC(2) receptor is similar to that observed with VPAC(1) receptor, with three remarkable exceptions: substitution of Thr(11) and Asn(28) by alanine increased K(i) for binding to VPAC(2) receptor; substitution of Tyr(22) by alanine increased EC(50) for stimulating adenylyl cyclase activity through interaction with the VPAC(2) receptor. By combining 3 mutations at positions 11, 22, and 28, we developed the [Ala(11,22,28)]VIP analog which constitutes the first highly selective (>1,000-fold) human VPAC(1) receptor agonist derived from VIP ever described.  相似文献   

19.
20.
Vasoactive intestinal peptide (VIP) is a neurotransmitter with neurotropic effects. VIP functions through two distinct G-protein-coupled receptor subtypes (VPAC1 and VPAC2). We have demonstrated expression of VPAC1 in pediatric nervous system tumors, including medulloblastoma arising in the cerebellum and neuroblastoma arising in the adrenal medulla. More recently, we have reported the differentiation of neuroblastoma cells by upregulation of VIP type 1 receptor suggesting a role for VPAC1 in neuronal development.To understand the molecular mechanisms regulating VPAC1 expression in both cerebellum and adrenal medulla, we have cloned the human VPAC1 gene and sequenced 2.6-kb of the 5'-flanking sequence. Expression of the luciferase reporter gene under the control of this 2.6-kb human VPAC1 promoter was induced 35-fold in a human medulloblastoma cell line (DAOY) and 36-fold in a human neuroblastoma cell line (SKNSH). Analysis of 5'-unidirectional deletion derivatives of the 2.6-kb fragment demonstrated that a 241-bp sequence immediately upstream of the VPAC1 coding region retains high activity, suggesting that it contains the core promoter region. Quantitative RT-PCR analysis demonstrated that VPAC1 is expressed in mouse cerebellar and adrenal tissues. The VPAC1 promoter also directed expression of a reporter gene in cerebellum and adrenal medulla in transgenic mice. Along with our previous findings, these results suggest that VPAC1 may play a functional role in development of both cerebellum and adrenal medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号