首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects employ iridoids to deter predatory attacks. Larvae of some Chrysomelina species are capable to produce those cyclopentanoid monoterpenes de novo. The iridoid biosynthesis proceeds via the mevalonate pathway to geranyl diphospate (GDP) subsequently converted into 8-hydroxygeraniol-8-O-beta-D-glucoside followed by the transformation into the defensive compounds. We tested whether the glucoside, its aglycon or geraniol has an impact on the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key regulatory enzyme of the mevalonate pathway and also the iridoid biosynthesis. To address the inhibition site of the enzyme, initially a complete cDNA encoding full length HMGR was cloned from Phaedon cochleariae. Its catalytic portion was then heterologously expressed in Escherichia coli. Purification and characterization of the recombinant protein revealed attenuated activity in enzyme assays by 8-hydroxygeraniol whereas no effect has been observed by addition of the glucoside or geraniol. Thus, the catalytic domain is the target for the inhibitor. Homology modeling of the catalytic domain and docking experiments demonstrated binding of 8-hydroxygeraniol to the active site and indicated a competitive inhibition mechanism. Iridoid producing larvae are potentially able to sequester glucosidically bound 8-hydroxygeraniol whose cleavage of the sugar moiety results in 8-hydroxygeraniol. Therefore, HMGR may represent a regulator in maintenance of homeostasis between de novo produced and sequestered intermediates of iridoid metabolism. Furthermore, we demonstrated that HMGR activity is not only diminished in iridoid producers but most likely prevalent within the Chrysomelina subtribe and also within the insecta.  相似文献   

2.
Summary In vivo studies of the incoporation of [U-14C]glycine into purine nucleotides have established the de novo pathway for purine biosynthesis in Artemia sp. during the early period of larval development. This pathway can be modified by the salt concentration of the incubation media. In addition, Artemia of different geographical origins may differ with respect to the detection, functionality and variability of this metabolical pathway.Abbreviations ADP adenosine, diphosphate - ASN acid soluble nucleotides - ATP adenosine triphosphate - DNA desoxyribonucleic acid - GDP guanosine diphosphate - GP4G pl, p4-diguanosine 5-tetraphosphate - HPLC high performance liquid chromatography - PCA perchloric acid - RNA ribonucleic acid  相似文献   

3.
4.
Dodge JE  Ramsahoye BH  Wo ZG  Okano M  Li E 《Gene》2002,283(1-2):41-48
Nuclear factor Y (NF-Y) is a highly conserved trimeric activator that recognizes with high specificity and affinity the widespread CCAAT box promoter element. We previously cloned the genes of 23 NF-Y genes of Arabidopsis thaliana (Gene 264 (2001) 173). Now that the Arabidopsis genome sequencing project is complete, we present the cloning, alignments and expression profiles of the remaining six genes coding for the three NF-Y subunits. Consistent with our previous reports, most of the new members of the three subunits show a unique tissue-specific pattern, while another AtNF-YC9 is rather ubiquitous.  相似文献   

5.
Water-soluble phospholamban (WSPLB) is a designed, water-soluble analogue of the pentameric membrane protein phospholamban (PLB), which contains the same core and interhelical residues as PLB, with only the solvent-exposed positions mutated. WSPLB contains the same secondary and quaternary structure as PLB. The hydrophobic cores of PLB and WSPLB contain Leu and Ile at the a- and d-positions of a heptad repeat (abcdefg) from residues 31-52, while residues 21-30 are rich in polar amino acids at these positions. While the full-length WSPLB forms pentamers in solution, truncated peptides lacking residues 21-30 are largely tetrameric. Thus, truncation of residues 1-20 promotes a switch from pentamer to tetramer formation. Here, the motifs for WSPLB pentamerization were elucidated by characterizing a series of peptides, which were progressively truncated in this polar 'switch' region. When fully present, the 'switch' region promotes pentamer formation in WSPLB, by destabilizing a more stable tetrameric species which exists in its absence. We find that the burial of hydrogen bonding residues from 21 to 30 drives WSPLB from a tetramer to a pentamer, with direct implications for coiled-coil design.  相似文献   

6.
L Ni  K Guan  H Zalkin  J E Dixon 《Gene》1991,106(2):197-205
The purH cDNA, encoding 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) transformylase-inosine monophosphate cyclohydrolase (ATIC), was cloned by functional complementation of an Escherichia coli purH mutant using a chicken liver cDNA expression library. This represents the first report of the cloning of any eukaryotic ATIC-encoding cDNA (PurH). The avian ATIC mRNA is 2.3 kb long and encodes a protein with an Mr of 64,422. The deduced amino acid sequence is 36% identical to the bacterial purH-encoded enzymes from Bacillus subtilis and E. coli. The avian cDNA was expressed as a glutathione S-transferase (GST) fusion protein that was purified in a single step by affinity chromatography. A novel vector was employed which permits rapid and highly efficient cleavage of the GST fusion protein yielding 10 mg of purified PurH product per liter of bacterial culture. Km values were determined with the purified fusion protein utilizing AICAR and (6-R)N10-formyl-tetrahydrofolate as substrates. These values compare favorably with the isolated avian enzyme, supporting the idea that kinetic, as well as other physical properties of the recombinant fusion protein are similar to the native avian enzyme. Large quantities of purified enzyme and the ability to generate site-directed mutations should make mechanistic studies possible. The recombinant enzyme also affords a simple and reliable approach to identifying new antifolates.  相似文献   

7.
Flavonoids are important plant secondary metabolites, which were shown to have antioxidant, anti-inflammatory or antiviral activities. Heterologous production of flavonoids in engineered microbial cell factories is an interesting alternative to their purification from plant material representing the natural source. The use of engineered bacteria allows to produce specific compounds, independent of soil, climatic or other plant-associated production parameters. The initial objective of this study was to achieve an engineered production of two interesting flavanonols, garbanzol and fustin, using Streptomyces albus as the production host. Unexpectedly, the engineered strain produced several flavones and flavonols in the absence of the additional expression of a flavone synthase (FNS) or flavonol synthase (FLS) gene. It turned out that the heterologous flavanone 3-hydroxylase (F3H) has a 2-hydroxylase side activity, which explains the observed production of 7,4′-dihydroxyflavone, resokaempferol, kaempferol and apigenin, as well as the biosynthesis of the extremely rare 2-hydroxylated intermediates 2-hydroxyliquiritigenin, 2-hydroxynaringenin and probably licodione. Other related metabolites, such as quercetin, dihydroquercetin and eriodictyol, have also been detected in culture extracts of this recombinant strain. Hence, the enzymatic versatility of S. albus can be conveniently exploited for the heterologous production of a large diversity of plant metabolites of the flavonoid family.  相似文献   

8.
1. Dispersal is a fundamental ecological process, so spatial models require realistic dispersal kernels. We compare five different forms for the dispersal kernel of the tansy beetle Chrysolina graminis moving between patches of its host-plant (tansy Tanacetum vulgare) in a riparian landscape. 2. Multi-patch mark-recapture data were collected every 2 weeks over 2 years within a large network of patches and from 2226 beetles. Dispersal was common (28.4% of 880 recaptures after a fortnight) and was more likely over longer intervals, out of small patches, for females and during flooding. Interpatch movement rates did not differ between years and exhibited no density dependence. Dispersal distances were similar for males and females, in both years and over all intervals, with a median dispersal distance of just 9.8 m, although a maximum of 856 m was recorded. 3. A model of dispersal, where patches competed for dispersers based on their size and distance from the beetle's source patch (scaled by the dispersal kernel) was fitted to the field data with a maximum likelihood procedure and each of five alternative kernels. The best fitting had relatively extended tails of long-distance dispersal, while Gaussian and negative exponential kernels performed worst. 4. The model suggests that females disperse more commonly than males and that both are strongly attracted to large patches but do not differ between years, which are consistent with the empirical results. Model-predicted emigration and immigration rates and dispersal phenologies match those observed, suggesting that the model captured the major drivers of tansy beetle dispersal. 5. Although negative exponential and Gaussian kernels are widely used for their simplicity, we suggest that these should not be the models of automatic choice, and that fat-tailed kernels with relatively higher proportions of long-distance dispersal may be more realistic.  相似文献   

9.
Seeds of dormant Douglas-fir seeds germinated poorly when they were cultivated at 20–23 °C while isolated embryos germinated fully within two weeks. Seed dormancy was therefore imposed on the embryo by its surrounding structures. This physiological behaviour was well correlated with changes in ABA level during culture. Indeed, the ABA level decreased in isolated embryos while it increased in both embryo and megagametophyte during culture of whole seeds. The origin of this increase was analysed and the different ways by which seed coats could interfere with ABA accumulation are discussed.  相似文献   

10.
Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.  相似文献   

11.
Much attention has been paid to ecology and evolution of damage-induced plant responses. Recently, it has been emphasized that phenotypic plasticity, such as induced plant responses, has the potential to lead to evolutionary changes of interacting partners. Here, we report that induced plant regrowth promotes a locally adaptive feeding preference of a leaf beetle, Plagiodera versicolora . We found that there was among-population variation in the strength of the feeding preference of the leaf beetle for leaf-age types of conspecific host plants. The strength of the preference was positively correlated to leaf production of host plants across populations, and the intensity of induced regrowth was likely to have been responsible for geographic variation in new leaf production. Within one population, we detected a significant additive genetic variance and heritability in the preference for consuming new vs. old leaves. Moreover, the strength of preference was significantly related to egg production depending on the leaf-age types. Thus, allopatric populations can evolutionarily develop different adaptive preference, according to locally distinct patterns of induced host regrowth.  相似文献   

12.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

13.
Zygaena larvae store relatively large amounts of cyanoglucosides within the haemolymph and cuticular cavities. Feeding experiments with 14C-labelled precursors demonstrate that valine and isoleucine are incorporated at different rates into the cyanoglucosides of the haemolymph and the defensive secretions. In conclusion from these different kinetics, we suggest that biosynthesis of cyanoglucosides takes place within the larval organs, such as fat body, gut, and/or haemolymph and that the epidermis is mainly involved in transporting and accumulating the cyanoglucosides within the integument.  相似文献   

14.
Abstract.  1. We examined the plant-mediated indirect effects of the stem-boring moth Endoclita excrescens (Lepidoptera: Hepialidae) on the leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) in three willow species, Salix gilgiana , S. eriocarpa , and S. serissaefolia.
2. When the stem-boring moth larvae damaged stems in the previous year, willows were stimulated to produce vigorously growing lateral shoots on these stems. These new lateral shoots were significantly longer and the upper leaves had significantly higher nitrogen and water content than current-year shoots on unbored stems, although the carbon content and leaf dry mass were not different between lateral and current-year shoots.
3. In the field, leaf beetle larvae and adults had significantly greater densities on lateral shoots of bored stems than on current-year shoots of unbored stems. A laboratory experiment showed that female beetles had significantly greater mass and fecundity when fed on leaves of newly-emerged lateral shoots. Thus, the stem-boring moth had a positive effect on the temporally and spatially separated leaf beetle by increasing resource availability by inducing compensatory regrowth.
4. The strength of the indirect effects on the density and performance of the leaf beetle differed among willow species, because there was interspecific variation in host quality and herbivore-induced changes in plant traits. In particular, we suggest that the differences in magnitude of the changes among willow species in shoot length and leaf nitrogen content greatly affected the strength of the plant-regrowth mediated indirect effect, coupled with host-plant preference of the leaf beetle.  相似文献   

15.
Shields SB  Franklin SJ 《Biochemistry》2004,43(51):16086-16091
A chimeric Cu-binding peptide has been designed on the basis of a turn substitution of the prion (PrP) octarepeat Cu-binding site into the engrailed homeodomain helix-turn-helix motif (HTH). This system is a model for the investigation of a single PrP Cu-binding site in a defined protein context. The 28-mer Cu-HTH peptide P7 spectroscopically mimics the PrP octarepeat (P7 = TERRRQQLSHGGGWGEAQIKIWFQNKRA). The Cu(II)-binding affinity of P7 was determined by ESI-MS and tryptophan fluorescence titrations to be K(d) = 2.5 +/- 0.7 microM at pH = 7.0. The quenching of fluorescence of the Trp within the binding loop (underlined above) is pH dependent and highly specific for Cu(II). No Trp quenching was observed in the presence of divalent Zn, Mn, Co, Ni, or Ca ions, and ESI-MS titrations confirmed that these divalent ions do not appreciably bind to P7. The EPR spectrum of Cu(II)-P7 shows that the Cu environment is axial and consistent with 6-coordinate N(3)O(H(2)O)(2) or N(4)(H(2)O)(2) coordination (A( parallel) = 172 x10(-)(4) cm(-)(1); g( parallel) = 2.27), very similar to that of the PrP octarepeat itself. Also like PrP, circular dichroism studies show that apo P7 is predominantly disordered in solution, and the structure is slightly enhanced by Cu binding. These data show the Cu-PrP HTH peptide reproduces the Cu-binding behavior of a single PrP octarepeat in a new context.  相似文献   

16.
A family is described in which a reciprocal translocation involving 5p and 21q appeared de novo in the chromosome complement of a woman who then transmitted it in both balanced and unbalanced form to her progeny. The proposita, a child with the cri du chat syndrome, had a deficiency for most of 5p, all of 21p, 21 centromere, and a small proximal segment of 21q. The reported cases of the cri du chat syndrome associated with translocations are reviewed and discussed in relation to this family.  相似文献   

17.
18.
The ancestral host plants of Chrysomela lapponica are Salicaceae rich in salicylic glycosides (SGs), which serve as precursors for larval chemical defensive secretions. Nevertheless, some populations have shifted to plants poor in SGs or even lacking these compounds. To study whether this shift is accompanied by adaptations to novel SG-poor host plants, we reared C. lapponica larvae from five geographical populations on host plants with high (Salix myrsinifolia) or low (S. caprea) SG content. Individuals from two populations (Finland and Kola region in Russia) associated in nature with SG-rich S. myrsinifolia showed higher survival and shorter developmental time on native host species than on foreign SG-poor S. caprea, thus demonstrating local adaptations to their ancestral SG-rich host plant. Individuals from a Belarus population associated in nature with SG-poor S. caprea showed higher survival on this species than on foreign SG-rich S. myrsinifolia, thus demonstrating local adaptation to the novel SG-poor host. On the other hand, individuals from two other populations associated in nature with SG-poor plants (Baikal and Ural region) performed equally well on both SG-rich S. myrsinifolia and SG-poor S. caprea in our rearing experiments, thus showing no local adaptation to a specific SG-host type, but rather a wide feeding niche including several Salicaceae species of different SG-type. Our results suggest that diet breadth of C. lapponica is a local phenomenon, and that adaptation strategies to novel host plants may differ between populations of a single leaf beetle species.  相似文献   

19.
Oxidative stress is recognized as a trigger of different metabolic events in all organisms. Various factors correlated with oxidation, such as the beta-oxidation of fatty acids and their enzymatic or nonenzymatic by-products (e.g., precocious sexual inducer factors and lipoperoxides) have been shown to be involved in aflatoxin formation. In the present study, we found that increased levels of reactive oxygen species (ROS) were correlated with increased levels of aflatoxin biosynthesis in Aspergillus parasiticus. To better understand the role of ROS formation in toxin production, we generated a mutant (Delta ApyapA) having the ApyapA gene deleted, given that ApyapA orthologs have been shown to be part of the antioxidant response in other fungi. Compared to the wild type, the mutant showed an increased susceptibility to extracellular oxidants, as well as precocious ROS formation and aflatoxin biosynthesis. Genetic complementation of the Delta ApyapA mutant restored the timing and quantity of toxin biosynthesis to the levels found in the wild type. The presence of putative AP1 (ApYapA orthologue) binding sites in the promoter region of the regulatory gene aflR further supports the finding that ApYapA plays a role in the regulation of aflatoxin biosynthesis. Overall, our results show that the lack of ApyapA leads to an increase in oxidative stress, premature conidiogenesis, and aflatoxin biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号