首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The order of Carnivora has been very well characterized with over 50 species analyzed by chromosome painting and with painting probe sets made for 9 Carnivora species. Representatives of almost all families have been studied with few exceptions (Otariidae, Odobenidae, Nandiniidae, Prionodontidae). The patterns of chromosome evolution in Carnivora are discussed here. Overall, many Carnivora species retained karyotypes that only slightly differ from the ancestral carnivore karyotype. However, there are at least 3 families in which the ancestral carnivore karyotype has been severely rearranged - Canidae, Ursidae and Mephitidae. Here we report chromosome painting of yet another Carnivora species with a highly rearranged karyotype, Genetta pardina. Recurrent rearrangements make it difficult to define the ancestral chromosomal arrangement in several instances. Only 2 species of pangolins (Pholidota), a sister order of Carnivora, have been studied by chromosome painting. Future use of whole-genome sequencing data is discussed in the context of solving the questions that are beyond resolution of conventional banding techniques and chromosome painting.  相似文献   

2.
Hummingbirds (Trochilidae) are one of the most enigmatic avian groups, and also among the most diverse, with approximately 360 recognized species in 106 genera, of which 43 are monotypic. This fact has generated considerable interest in the evolutionary biology of the hummingbirds, which is reflected in a number of DNA-based studies. However, only a few of them explored chromosomal data. Given this, the present study provides an analysis of the karyotypes of three species of Neotropical hummingbirds, Anthracothorax nigricollis (ANI), Campylopterus largipennis (CLA), and Hylocharis chrysura (HCH), in order to analyze the chromosomal processes associated with the evolution of the Trochilidae. The diploid number of ANI is 2n=80 chromosomes, while CLA and HCH have identical karyotypes, with 2n=78. Chromosome painting with Gallus gallus probes (GGA1-12) shows that the hummingbirds have a karyotype close to the proposed ancestral bird karyotype. Despite this, an informative rearrangement was detected: an in-tandem fusion between GGA7 and GGA9 found in CLA and HCH, but absent in ANI. A comparative analysis with the tree of life of the hummingbirds indicated that this fusion must have arisen following the divergence of a number of hummingbird species.  相似文献   

3.
The genus Aotus represents a highly diverse group with an especially intricate taxonomy. No standard cytogenetic nomenclature for the genus has yet been established. So far, cytogenetic studies have characterized 18 different karyotypes with diploid numbers ranging from 46 to 58 chromosomes. By combining G-banding comparisons and molecular cytogenetic techniques, we were able to describe the most likely pattern of chromosome evolution and phylogenetic position of two Aotus karyomorphs (KMs) from Venezuela: Aotus nancymai (KM3, 2n=54) and Aotus sp. (KM9, 2n=50). All of the proposed Platyrrhini ancestral associations (2/16, 3/21, 5/7, 8/18, 10/16, 14/15) were found in the Aotus KMs studied, except 2/16 and 10/16. In addition, some derived chromosomal associations were also detected in both KMs (1/3, 1/16, 2/12, 2/20, 3/14, 4/15, 5/15, 7/11, 9/15, 9/17, 10/11, and 10/22). Although some of these associations have been found in other New World monkeys, our results suggest that Aotus species have undergone a highly derived chromosomal evolution. The homologies between these two Aotus KMs and human chromosomes were established, indicating that KM3 has a more derived karyotype than KM9 with respect to the ancestral Platyrrhini karyotype.  相似文献   

4.
Comparative genomics is an important and expanding field of research, and the genome-wide comparison of the chromosome constitution of different species makes a major contribution to this field. Cross-species chromosome painting is a powerful technique for establishing chromosome homology maps, defining the sites of chromosome fusions and fissions, investigating chromosome rearrangements during evolution and constructing ancestral karyotypes. Here the protocol for cross-species chromosome painting is presented. It includes sections on cell culture and metaphase preparation, labeling of chromosome-specific DNA, fluorescent in situ hybridization (chromosome painting) and image analysis. Cell culture and metaphase preparation can take between 1 and 2 wk depending on the cell culture. Labeling of chromosome-specific DNA is completed in 1 d. Fluorescent in situ hybridization can be completed in a maximum of 4 d.  相似文献   

5.
The Ursidae family includes eight species, the karyotype of which diverges somewhat, in both chromosome number and morphology, from that of other families in the order Carnivora. The combination of consensus molecular phylogeny and high-resolution trypsin G-banded karyotype analysis has suggested that ancestral chromosomal fissions and at least two fusion events are associated with the development of the different ursid species. Here, we revisit this hypothesis by hybridizing reciprocal chromosome painting probes derived from the giant panda (Ailuropoda melanoleuca), domestic cat (Felis catus), and man (Homo sapiens) to representative bear species karyotypes. Comparative analysis of the different chromosome segment homologies allowed reconstruction of the genomic composition of a putative ancestral bear karyotype based upon the recognition of 39 chromosome segments defined by painting as the smallest conserved evolutionary unit segments (pSCEUS) among these species. The different pSCEUS combinations occurring among modern bear species support and extend the postulated sequence of chromosomal rearrangements and provide a framework to propose patterns of genome reorganization among carnivores and other mammal radiations.  相似文献   

6.
Vespertilionidae is the largest chiropteran family that comprises species of different specialization and wide geographic distribution. Up to now, only a few vespertilionid species have been studied by molecular cytogenetic approaches. Here, we have investigated the karyotypic relationships of 4 Vespertilionidae species from Siberia by G-banding and comparative chromosome painting. Painting probes from Aselliscus stoliczkanus were used to establish interspecific homologous chromosomal segments in Myotis dasycneme (2n = 44), Murina hilgendorfi (2n = 44), Plecotus auritus (2n = 32), and Vespertilio murinus (2n = 38). Robertsonian translocations and a few inversions differentiated the karyotypes of the examined species. Painting of P. auritus karyotype with human probes revealed 3 previously undetected cryptic segments homologous to human chromosomes (Homo sapiens, HSA) 8, 15, and 19, respectively. As a consequence, the existence of 2 HSA 4 + 8 syntenies in the P. auritus karyotype has been proven. In addition, a pericentric inversion or centromere shift was revealed on the smallest metacentric P. auritus chromosome 16/17 using the HSA 16 probe explaining the different G-banding pattern in comparison to the homologous Myotis chromosome 16/17.  相似文献   

7.
Human and sheep chromosome-specific probes were used to construct comparative painting maps between the pig (Suiformes), cattle and sheep (Bovidae), and humans. Various yet unknown translocations were observed that would assist in a more complete reconstruction of homology maps of these species. The number of homologous segments that can be identified with sheep probes in the pig karyotype exceeds that described previously by chromosome painting between two non-primate mammals belonging to the same order. Sheep probes painted 62 segments on pig autosomes and delineated not only translocations, but also 9 inversions. All inversions were paracentric and indicate that these rearrangements may be characteristic for chromosomal changes in suiforms. Hybridizations of all sheep painting probes to cattle chromosomes confirmed the chromosome conservation in bovids. In addition, we observed a small translocation that was previously postulated from linkage mapping data, but was not yet described by physical mapping. The chromosome painting data are complemented with a map of available comparative gene mapping data between pig and sheep genomes. A detailed table listing the comparative gene mapping data between pig and cattle genomes is provided. The reanalysis of the pig karyotype with a new generation of human paint probes provides an update of the human/pig comparative genome map and demonstrates two new chromosome homologies. Seven conserved segments not yet identified by chromosome painting are also reported. Received: 2 October 2000 / Accepted: 15 January 2001  相似文献   

8.
Cross-species chromosome painting was used to investigate genome rearrangements between tammar wallaby Macropus eugenii (2n = 16) and the swamp wallaby Wallabia bicolor (2n = 10♀/11♂), which diverged about 6 million years ago. The swamp wallaby has an XX female:XY1Y2 male sex chromosome system thought to have resulted from a fusion between an autosome and the small original X, not involving the Y. Thus, the small Y1 should represent the original Y and the large Y2 the original autosome. DNA paints were prepared from flow-sorted and microdissected chromosomes from the tammar wallaby. Painting swamp wallaby spreads with each tammar chromosome-specific probe gave extremely strong and clear signals in single-, two-, and three-color FISH. These showed that two tammar wallaby autosomes are represented unchanged in the swamp wallaby, two are represented by different centric fusions, and one by a tandem fusion to make the very long arms of swamp wallaby Chromosome (Chr) 1. The large swamp wallaby X comprises the tammar X as its short arm, and a tandemly fused 7 and 2 as the long arm. The acrocentric swamp wallaby Y2 is a 2/7 fusion, homologous with the long arm of the X. The small swamp wallaby Y1 is confirmed as the original Y by its painting with the tammar Y. However, the presence of sequences shared between the microdissected tammar Xp and Y on the swamp wallaby Y2 implies that the formation of the compound sex chromosomes involved addition of autosome(s) to both the original X and Y. We propose that this involved fusion with an ancient pseudoautosomal region followed by fission proximal to this shared region. Received: 16 October 1996/Accepted: 30 January 1997  相似文献   

9.
The identity of the chromosomes involved in the multiple sex system of Alouatta caraya (Aca) and the possible distribution of this system among other Ceboidea were investigated by chromosome painting of mitotic cells from five species and by analysis of meiosis at pachytene in two species. The identity of the autosome #7 (X2) involved in the multiple system of Aca and its breakage points were demonstrated by both meiosis and chromosome painting. These features are identical to those described by Consigliere et al. [1996] in Alouatta seniculus sara (Assa) and Alouatta seniculus arctoidea (Asar). This multiple system was absent in the other four Ceboidea species studied here. However, data from the literature strongly suggest the presence of this multiple in other members of this genus. The presence of this multiple system among several species and subspecies that show high levels of chromosome rearrangements may suggest a special selective value of this multiple. The meiotic features of the sex systems of Aca and Cebus apella paraguayanus (Cap) are strikingly different at pachytene, as the latter system is similar to the sex pair of man and other primates. The relatively large genetic distances between species presently showing this multiple system suggest that its origin is not recent. Other members of the same genus should be investigated at meiosis and by chromosome painting in order to know the extent and distribution of this complex sex-chromosome system.  相似文献   

10.
In a Zoo-FISH study chicken autosomal chromosome paints 1 to 9 (GGA1-GGA9) were hybridized to metaphase spreads of nine diverse birds belonging to primitive and modern orders. This comparative approach allows tracing of chromosomal rearrangements that occurred during bird evolution. Striking homologies in the chromosomes of the different species were noted, indicating a high degree of evolutionary conservation in avian karyotypes. In two species, the quail and the goose, all chicken paints specifically labeled their corresponding chromosomes. In three pheasant species as well as in the American rhea and blackbird, GGA4 hybridized to chromosome 4 and additionally to a single pair of microchromosomes. Furthermore, in the pheasants fission of the ancestral galliform chromosome 2 could be documented. Hybridization of various chicken probes to two different chromosomes or to only the short or long chromosome arm of one chromosome pair in the species representing the orders Passeriformes, Strigiformes, and Columbiformes revealed translocations and chromosome fissions during species radiation. Thus comparative analysis with chicken chromosome-specific painting probes proves to be a rapid and comprehensive approach to elucidate the chromosomal relationships of the extant birds.  相似文献   

11.
Comparative chromosome painting has shown that synteny has been conserved for large segments of the genome in various placental mammals. Advances such as spectral karyotyping and multicolour ‘bar coding’ lend speed and precision to comparative molecular cytogenetics. Reciprocal chromosome painting and hybridisations with probes such as yeast artificial chromosomes, cosmids, and fibre fluorescence in situ hybridisation allow subchromosomal assignments of chromosome regions and can identify breakpoints of rearranged chromosomes. Advances in molecular cytogenetics can now be used to test the hypothesis that chromosome rearrangement breakpoints in human pathology and in evolution are correlated.  相似文献   

12.
13.
Fluorescence in situ hybridization with the use of the equine X whole chromosome painting probe was carried out on chromosome spreads originating from three mares with poor reproductive performance (infertility, miscarriage or stillbirth). The numbers of analysed spreads were high (105, 300 and 480) and in all three mares a low frequency of mosaicism was identified. The mares had the following karyotypes: 64,XX/63,X/65,XXX (93.6%/5.7%/0.7%), 64,XX/63,X (98.9%/1.1%) and 64,XX/63,X (94.3%/5.7%). The incidence and importance of the low percentage X chromosome mosaicism are discussed.  相似文献   

14.
Non-isotopic high resolution in sity hybridization was applied to cytological preparations of sporulating yeast cells. Ribosomal DNA (rDNA) and chromosome V-specific recombinant lambda clones were used to tag individual chromosomes and chromosome subregions. This allowed the study of chromosome behaviour during early meiotic prophase. It was found that chromatin becomes condensed and homologous DNA sequences then appear to become aligned prior to synaptonemal complex formation.by E.R. Schmidt  相似文献   

15.
The laboratory mouse (Mus musculus, 2n = 40), the Chinese hamster (Cricetulus griseus, 2n = 22), and the golden (Syrian) hamster (Mesocricetus auratus, 2n = 44) are common laboratory animals, extensively used in biomedical research. In contrast with the mouse genome, which was sequenced and well characterized, the hamster species has been set aside. We constructed a chromosome paint set for the golden hamster, which for the first time allowed us to perform multidirectional chromosome painting between the golden hamster and the mouse and between the two species of hamster. From these data we constructed a detailed comparative chromosome map of the laboratory mouse and the two hamster species. The golden hamster painting probes revealed 25 autosomal segments in the Chinese hamster and 43 in the mouse. Using the Chinese hamster probes, 23 conserved segments were found in the golden hamster karyotype. The mouse probes revealed 42 conserved autosomal segments in the golden hamster karyotype. The two largest chromosomes of the Chinese hamster (1 and 2) are homologous to seven and five chromosomes of the golden hamster, respectively. The golden hamster karyotype can be transformed into the Chinese hamster karyotype by 15 fusions and 3 fissions. Previous reconstructions of the ancestral murid karyotype proposed diploid numbers from 2n = 52 to 2n = 54. By integrating the new multidirectional chromosome painting data presented here with previous comparative genomics data, we can propose that syntenies to mouse Chrs 6 and 16 were both present and to hypothesize a diploid number of 2n = 48 for the ancestral Murinae/Cricetinae karyotype.  相似文献   

16.
Cornforth, M. N. Analyzing Radiation-Induced Complex Chromosome Rearrangements by Combinatorial Painting. Radiat. Res. 155, 643-659 (2001). Prior to the advent of whole-chromosome painting, it was universally assumed that virtually all radiation-induced exchanges represented a simple rejoining between pairs of chromosome breaks. It is now known that a substantial proportion of such exchanges are actually complex, meaning that they involve the interaction of three (or more) breaks distributed among two (or more) chromosomes. The purpose of this review is to discuss some of the implications of aberration analysis using whole-chromosome painting, with emphasis given to newer combinatorial painting schemes that allow for the unambiguous identification of all homologous chromosome pairs. Such analysis requires reconsideration of how resulting information is to be handled for the purposes of tabulating and communicating raw data, quantifying aberration yields, and presenting experimental results in a cogent manner. Facilitating these objectives requires the introduction of certain concepts and terminologies that have no counterpart in conventional cytogenetic analyses.  相似文献   

17.
Yi M  Yu Q 《Genetika》2002,38(11):1480-1484
Human sex chromosome-specific probes were hybridized to metaphase spreads of three fish species, Monopterus albus Zuiew, Danio rerio and Mastacembelus aculeatus Basilewsky, to reveal evolutionary conservation of sex chromosomal segments between distantly related species of vertebrates. The human X chromosomal paint disclosed 4, 8, and 6 conserved syntenic segments in the karyotypes of the three fish species respectively, which were scattered in several pairs of homologous chromosomes. But no conserved segment was identified in our experiments when the human Y chromosomal probes were used. The evolution of the X chromosome of vertebrates is discussed.  相似文献   

18.
A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2) from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases.  相似文献   

19.
The Mus musculus and Rattus norvegicus genomes have been extensively studied, yet despite the emergence of Peromyscus maniculatus as an NIH model for genome sequencing and biomedical research much remains unknown about the genome organization of Peromyscines. Contrary to their phylogenetic relationship, the genomes of Rattus and Peromyscus appear more similar at the gross karyotypic level than either does to Mus. We set out to define the chromosome homologies between Peromyscus, Mus and Rattus. Reciprocal cross-species chromosome painting and G-band homology assignments were used to delineate the conserved chromosome homology map between P. maniculatus and M. musculus. These data show that each species has undergone extensive chromosome rearrangements since they last shared a common ancestor 25 million years ago (mya). This analysis coupled with an inferred homology map with Rattus revealed a high level of chromosome conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived.  相似文献   

20.
Marker chromosome are small supernumerary chromosomes that are sometimes associated with developmental abnormalities. Hence, the genes involved in such cases provide an interesting approach to understanding developmental abnormalities in man. As a first step towards isolating such sequences, marker chromosomes need complete characterization. By combining chromosome isolation by flow sorting and the degenerate oligonucleotide primed — polymerase chain reaction, we have constructed a DNA library specific for a marker chromosome found in a child with severe developmental abnormalities. We used fluorescent in situ hybridization of the library onto normal metaphase spreads (reverse chromosome painting) and were thus able to determine that the marker consists of the centromeric part of chromosome 7, the telomeric region of the long arm of chromosome 5 and the telomeric region of the short arm of the X-chromosome. Subsequently, we hybridized normal chromosome-specific libraries of the relevant chromosomes onto metaphases containing the marker chromosome (forward chromosome painting) and could in this manner establish the precise location of the different chromosome regions on the marker chromosome itself. This is a general approach suitable for outlining marker chromosomes in detail, and will aid the identification of the genes involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号