共查询到20条相似文献,搜索用时 15 毫秒
1.
The E/K coil, a heterodimeric coiled-coil, has been designed as a universal peptide capture and delivery system for use in applications such as biosensors and as an expression and affinity purification tag. In this design, heterodimer formation is specified through the placement of charged residues at the e and g positions of the heptad repeat such that the E coil contains all glutamic acid residues at these positions, and the K coil contains all lysine residues at these positions. The affinity and stability of the E/K coil have been modified to allow a greater range of conditions for association and dissociation. Increasing the hydrophobicity of the coiled-coil core, by substituting isoleucine for valine, gave increases in stability of 2.81 and 3.73 kcal/mol (0.47 kcal/mol/substitution). Increasing the alpha-helical propensity of residues outside the core, by substituting alanine for serine, yielded increases in stability of 2.68 and 3.28 kcal/mol (0.41 and 0.45 kcal/mol/substitution). These sequence changes yielded a series of heterodimeric coiled-coils whose stabilities varied from 6.8 to 11.2 kcal/mol, greatly expanding their scope for use in protein engineering and biomedical applications. 相似文献
2.
Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. 下载免费PDF全文
W. D. Kohn C. M. Kay R. S. Hodges 《Protein science : a publication of the Protein Society》1995,4(2):237-250
The destabilizing effect of electrostatic repulsions on protein stability has been studied by using synthetic two-stranded alpha-helical coiled-coils as a model system. The native coiled-coil consists of two identical 35-residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow formation of an interchain disulfide bridge. This peptide, designed to contain no intrahelical or interhelical electrostatic interactions, forms a stable coiled-coil structure at 20 degrees C in benign medium (50 mM KCl, 25 mM PO4, pH 7) with a [urea]1/2 value of 6.1 M. Four mutant coiled-coils were designed to contain one or two Glu substitutions for Gln per polypeptide chain. The resulting coiled-coils contained potential i to i' + 5 Glu-Glu interchain repulsions (denoted as peptide E2(15,20)), i to i' + 2 Glu-Glu interchain repulsions (denoted E2(20,22)), or no interchain ionic interactions (denoted E2(13,22) and E1(20)). The stabilities of the coiled-coils were determined by measuring the ellipticities at 222 nm as a function of urea or guanidine hydrochloride concentration at 20 degrees C in the presence and absence of an interchain disulfide bridge. At pH 7, in the presence of urea, the stabilities of E2(13,22) and E2(20,22) were identical suggesting that the potential i to i' + 2 interchain Glu-Glu repulsion in the E2(20,22) coiled-coil does not occur. In contrast, the mutant E2(15,20) is substantially less stable than E2(13,22) or E2(15,20) by 0.9 kcal/mol due to the presence of two i to i' + 5 interchain Glu-Glu repulsions, which destabilize the coiled-coil by 0.45 kcal/mol each. At pH 3 the coiled-coils were found to increase in stability as the number of Glu substitutions were increased. This, combined with reversed-phase HPLC results at pH 7 and pH 2, supports the conclusion that the protonated Glu side chains present at low pH are significantly more hydrophobic than Gln side chains which are in turn more hydrophobic than the ionized Glu side chains present at neutral pH. The protonated Glu residues increase the hydrophobicity of the coiled-coil interface leading to higher coiled-coil stability. The guanidine hydrochloride results at pH 7 show similar stabilities between the native and mutant coiled-coils indicating that guanidine hydrochloride masks electrostatic repulsions due to its ionic nature and that Glu and Gln in the e and g positions of the heptad repeat have very similar effects on coiled-coil stability in the presence of GdnHCl. 相似文献
3.
Unique stabilizing interactions identified in the two-stranded alpha-helical coiled-coil: crystal structure of a cortexillin I/GCN4 hybrid coiled-coil peptide 下载免费PDF全文
Lee DL Ivaninskii S Burkhard P Hodges RS 《Protein science : a publication of the Protein Society》2003,12(7):1395-1405
We determined the 1.17 A resolution X-ray crystal structure of a hybrid peptide based on sequences from coiled-coil regions of the proteins GCN4 and cortexillin I. The peptide forms a parallel homodimeric coiled-coil, with C(alpha) backbone geometry similar to GCN4 (rmsd value 0.71 A). Three stabilizing interactions have been identified: a unique hydrogen bonding-electrostatic network not previously observed in coiled-coils, and two other hydrophobic interactions involving leucine residues at positions e and g from both g-a' and d-e' interchain interactions with the hydrophobic core. This is also the first report of the quantitative significance of these interactions. The GCN4/cortexillin hybrid surprisingly has two interchain Glu-Lys' ion pairs that form a hydrogen bonding network with the Asn residues in the core. This network, which was not observed for the reversed Lys-Glu' pair in GCN4, increases the combined stability contribution of each Glu-Lys' salt bridge across the central Asn15-Asn15' core to approximately 0.7 kcal/mole, compared to approximately 0.4 kcal mole(-1) from a Glu-Lys' salt bridge on its own. In addition to electrostatic and hydrogen bonding stabilization of the coiled-coil, individual leucine residues at positions e and g in the hybrid peptide also contribute to stability by 0.7 kcal/mole relative to alanine. These interactions are of critical importance to understanding the stability requirements for coiled-coil folding and in modulating the stability of de novo designed macromolecules containing this motif. 相似文献
4.
Coiled-coil proteins are assemblies of two to four alpha-helices that pack together in a parallel or anti-parallel fashion. Coiled-coil structures can confer a variety of functional capabilities, which include enabling proteins, such as myosin, to function in the contractile apparatus of muscle and non-muscle cells. The TlpA protein encoded by the virulence plasmid of Salmonella is an alpha-helical protein that forms an elongated coiled-coil homodimer. A number of studies have clearly established the role of TlpA as a temperature-sensing gene regulator, however the potential use of a TlpA in a thermo-sensor application outside of the organism has not been exploited. In this paper, we demonstrate that TlpA has several characteristics that are common with alpha-helical coiled-coils and its thermal folding and unfolding is reversible and rapid. TlpA is extremely sensitive to changes in temperature. We have also compared the heat-stability of TlpA with other structurally similar proteins. Using a folding reporter, in which TlpA is expressed as a C-terminal fusion with green fluorescent protein (GFP), we were able to use fluorescence as an indicator of folding and unfolding of the fusion protein. Our results on the rapid conformational changes inherent in TlpA support the previous findings and we present here preliminary data on the use of a GFP-TlpA fusion protein as temperature sensor. 相似文献
5.
Plant heterotrimeric G protein beta subunit is associated with membranes via protein interactions involving coiled-coil formation 总被引:17,自引:0,他引:17
The new functional role of activated protein C (APC) in the regulation of tissue factor (TF) expression was investigated using the cultured human monoblastic leukemia U937 cell line. A flow cytofluorometric analysis demonstrated that treatment with APC resulted in time- and dose-dependent decrease in TF expression in unstimulated and phorbol ester-stimulated cells. The effect was antagonized by the monoclonal antibody (mAb) to endothelial protein C/APC receptor (EPCR), 252, which strongly inhibited the interaction between APC and EPCR. In contrast, mAbs 49 and 379, which bind to EPCR without blocking APC binding, had no or only a modest effect. It is concluded that culturing U937 cells in the presence of APC caused down-regulation of TF expression through the EPCR-dependent mechanism, independent of whether induction was triggered by phorbol ester. 相似文献
6.
High-resolution spot-scan electron microscopy of microcrystals of an alpha-helical coiled-coil protein 总被引:1,自引:0,他引:1
We describe the electron microscopy of a crystalline assembly of an alpha-helical coiled-coil protein extracted from the ootheca of the praying mantis. Electron diffraction patterns of unstained crystals show crystal lattice sampling of the coiled-coil molecular transform to a resolution beyond 1.5 A. Using a "spot-scan" method of electron imaging, micrographs of unstained crystals have been obtained that visibly diffract laser light from crystal spacings as small as 4.3 A. A projection map was calculated to 4 A using electron diffraction amplitudes and phases from computer-processed images. The projection map clearly shows modulations in density arising from the 5.1 A alpha-helical repeat, the first time this type of modulation has been revealed by electron microscopy. The crystals have p2 plane group symmetry with a = 92.4 A, b = 150.7 A, y = 92.4 degrees. Examination of tilted specimens shows that c is approximately 18 A, indicating that the unit cell is only one molecule thick. A preliminary interpretation shows tightly packed molecules some 400 A long lying with their long axes in the plane of the projection. The molecules have a coiled-coil configuration for most of their length. The possible modes of packing of the molecules in three dimensions are discussed. 相似文献
7.
The E/K coil, a heterodimeric coiled-coil, has been designed as a universal peptide capture and delivery system for use in applications such as biosensors and affinity chromatography. In this design, heterodimer formation is specified through the placement of charged residues at the e and g positions of the heptad repeat. The affinity and stability of the E/K coil has been modified in order to allow a greater range of conditions for association and dissociation by varying the chain length to obtain three, four and five heptad coiled-coils (21, 28 and 35 residues per polypeptide chain). The effect of chain length on stability and folding was examined by circular dichroism spectroscopy, guanidine hydrochloride denaturation, and redox equilibrium experiments. It was found that increases in chain length produced increases in the stability of heterodimeric coiled-coils, but in a nonlinear fashion. The resulting disulfide-bridged heterostranded molecules and reduced heterodimers span a wide range of stabilities (deltaG=3.3-11.9 kcal/mol), greatly expanding their scope for use in protein engineering and biomedical applications. 相似文献
8.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core. 相似文献
9.
Our de novo designed coiled-coil model protein consists of two identical 35-residue polypeptide chains arranged in a parallel and in-register alignment via interchain hydrophobic interactions and a disulfide bridge at the position 2 between two helices. To quantitate the relative contribution of leucine residues at the nonequivalent position of the 3-4 hydrophobic repeat to the stability of the two-stranded alpha-helical coiled-coil, a single alanine was systematically substituted for a leucine in each chain at position "a" (9, 16, 23, or 30) or "d" (5, 12, 19, 26, or 33). The formation and stability of the coiled-coils were determined by circular dichroism studies in the absence and presence of guanidine hydrochloride. All the proteins with an alanine substituted at position a have a similar stability ([Gdn.HCl]1/2 ranges from 2.6 to 2.9 M), while all the proteins with an alanine substituted at position d have similar stability ([Gdn.HCl]1/2 ranges from 3.6 to 4.2 M), except for the proteins with an alanine substituted in the C-terminal heptad. The greater decrease in stability observed for a Leu----Ala mutation at position a (the average delta delta Gu value is 3.3 kcal/mol) compared to those where the substitution was effected at position d (the average delta delta Gu value is 2.0 kcal/mol) indicates that an Ala mutation at position a has a greater effect on the side-chain packing and hydrophobic interactions in the coiled-coil than an Ala mutation at position d.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
The alpha-helical coiled-coil motif is characterized by a heptad repeat pattern (abcdefg)(n) in which residues a and d form the hydrophobic core. Long coiled-coils (e.g., tropomyosin, 284 residues per polypeptide chain) typically do not have a continuous hydrophobic core of stabilizing residues, but rather one that consists of alternating clusters of stabilizing and destabilizing residues. We have arbitrarily defined a cluster as a minimum of three consecutive stabilizing or destabilizing residues in the hydrophobic core. We report here on a series of two-stranded, disulfide-bridged parallel alpha-helical coiled-coils that contain a central cassette of three consecutive hydrophobic core positions (d, a, and d) with a destabilizing cluster of three consecutive Ala residues in the hydrophobic core on each side of the cassette. The effect of adding one to three stabilizing hydrophobes in these positions (Leu or Ile; denoted as [see text]) was investigated. Alanine residues (denoted as [see text]) are used to represent destabilizing residues. The peptide with three Ala residues in the d a d cassette positions ([see text]) was among the least stable coiled-coil (T(m) = 39.3 degrees C and Urea(1/2) = 1.9 M). Surprisingly, the addition of one stabilizing hydrophobe (Leu) to the cassette or two stabilizing hydrophobes (Leu), still interspersed by an Ala in the cassette ([see text]), also did not lead to any gain in stability. However, peptides with two adjacent hydrophobes in the cassette ([see text])([see text]) did show a gain in stability of 0.9 kcal/mole over the peptide with two interspersed hydrophobes ([see text]). Because the latter three peptides have the same inherent hydrophobicity, the juxtaposition of stabilizing hydrophobes leads to a synergistic effect, and thus a clustering effect. The addition of a third stabilizing hydrophobe to the cassette ([see text]) resulted in a further synergistic gain in stability of 1.7 kcal/mole (T(m) = 54.1 degrees C and Urea(1/2) = 3.3M). Therefore, the role of hydrophobicity in the hydrophobic core of coiled-coils is extremely context dependent and clustering is an important aspect of protein folding and stability. 相似文献
11.
12.
Competing interactions contributing to alpha-helical stability in aqueous solution. 总被引:2,自引:1,他引:2 下载免费PDF全文
M. J. Bodkin J. M. Goodfellow 《Protein science : a publication of the Protein Society》1995,4(4):603-612
The stability of a 15-residue peptide has been investigated using CD spectroscopy and molecular simulation techniques. The sequence of the peptide was designed to include key features that are known to stabilize alpha-helices, including ion pairs, helix dipole capping, peptide bond capping, and aromatic interactions. The degree of helicity has been determined experimentally by CD in three solvents (aqueous buffer, methanol, and trifluoroethanol) and at two temperatures. Simulations of the peptide in the aqueous system have been performed over 500 ps at the same two temperatures using a fully explicit solvent model. Consistent with the CD data, the degree of helicity is decreased at the higher temperature. Our analysis of the simulation results has focused on competition between different side-chain/side-chain and side-chain/main-chain interactions, which can, in principle, stabilize the helix. The unfolding in aqueous solution occurs at the amino terminus because the side-chain interactions are insufficient to stabilize both the helix dipole and the peptide hydrogen bonds. Loss of capping of the peptide backbone leads to water insertion within the first peptide hydrogen bond and hence unfolding. In contrast, the carboxy terminus of the alpha-helix is stable in both simulations because the C-terminal lysine residue stabilizes the helix dipole, but at the expense of an ion pair. 相似文献
13.
Ilya A. Vakser 《Proteomics》2023,23(17):2300219
Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein–protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein–protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology. 相似文献
14.
15.
An alpha-helical coiled-coil structure is one of the basic structural units in proteins. Hydrophilic residues at the hydrophobic positions in the coiled-coil structure play important roles in structures and functions of natural proteins. We reported here a peptide that formed a triple stranded alpha-helical coiled-coil showing the pH-dependent structural change. The peptide was designed to have two His residues at the hydrophobic positions of the center of the coiled-coil structure. The peptide folded into a triple stranded coiled-coil at neutral pH, while it unfolded at acidic pH. This construct is useful to create a protein that the structure or function is controlled by pH. 相似文献
16.
This protocol describes a single-molecule pull-down (SiMPull) assay for analyzing physiological protein complexes. The assay combines the conventional pull-down assay with single-molecule total internal reflection fluorescence (TIRF) microscopy and allows the probing of single macromolecular complexes directly from cell or tissue extracts. In this method, antibodies against the protein of interest are immobilized on a passivated microscope slide. When cell extracts are applied, the surface-tethered antibody captures the protein together with its physiological interaction partners. After washing away the unbound components, single-molecule fluorescence microscopy is used to probe the pulled-down proteins. Captured proteins are visualized through genetically encoded fluorescent protein tags or through antibody labeling. Compared with western blot analysis, this ultrasensitive assay requires considerably less time and reagents and provides quantitative data. Furthermore, SiMPull can distinguish between multiple association states of the same protein. SiMPull is generally applicable to proteins from a variety of cellular contexts and to endogenous proteins. Starting with the cell extracts and passivated slides, the assay requires 1.5-2.5 h for data acquisition and analysis. 相似文献
17.
Evidence for coiled-coil alpha-helical regions in the long arm of laminin. 总被引:20,自引:0,他引:20 下载免费PDF全文
Three new laminin fragments, E8, E9 and 25K with mol. wt. 50 000-280 000, were prepared from a limited elastase digest of laminin and from tissue extracts. They were similar with respect to their rod-like structure, a high alpha-helix content, the assembly from two chain segments and immunological cross-reactivity. Two of the fragments (E8 and E9) possess in addition globular domains which lack alpha-helices. Chemical, immunological and physical data together with sequence analysis strongly indicate that the alpha-helical segments are assembled in coiled-coil structures which are located in the rod of the long arm of laminin. These data give new insights into the overall structure of the protein. 相似文献
18.
19.
B Catimel M C Faux M Nerrie J Rothacker L J Otvos J D Wade E C Nice A W Burgess 《The journal of peptide research》2001,58(6):493-503
The coiled coil is a common structural motif found both as the dominant structure in fibrous proteins and as an oligomerization domain in a variety of cytoskeletal and extracellular matrix proteins. Coiled-coils typically consist of two to four helices that are supercoiled around one another in either parallel or antiparallel orientations. In the past few years our knowledge of the structure and specificity of coiled coil interactions has increased, allowing the de novo design and preparation of coiled-coils with well-defined structure and specificity. Indeed, the design and synthesis of a peptide that binds specifically to a single coiled-coil-containing protein, adenomatous polyposis coli (APC) has been reported. We have optimized solid-phase synthesis techniques to produce a modified form of the anti-APC peptide that contains a biotin moiety specifically placed so as to allow selective orientation onto the surface of a biosensor or affinity support. These peptide surfaces have been used to both monitor and purify APC and APC complexes from cellular extracts. 相似文献
20.
Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers. 总被引:2,自引:7,他引:2 下载免费PDF全文
B. Y. Zhu N. E. Zhou C. M. Kay R. S. Hodges 《Protein science : a publication of the Protein Society》1993,2(3):383-394
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a." 相似文献